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Chapter 12
System Modeling of Receptor-Induced 
Apoptosis

François Bertaux, Dirk Drasdo, and Grégory Batt

Abstract Receptor-induced apoptosis is a complex signal transduction pathway 
involving numerous protein–protein interactions and post-translational modifica-
tions. The response to death receptor stimulation varies significantly from one cell 
line to another and even from one cell to another within a given cell line. In this 
context, it is often difficult to assess whether the molecular mechanisms identified 
so far are sufficient to explain the rich quantitative observations now available, and 
to detect possible gaps in our understanding. This is precisely where computational 
systems biology approaches may contribute. In this chapter, we review studies done 
in this direction, focusing on those that provided a significant insight on the func-
tioning of this complex pathway by tightly integrating experimental and computa-
tional approaches.
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12.1  Introduction

Apoptosis is a form of programmed cell death conserved among metazoans playing 
a central role in development and involved in many diseases. Notably, most success-
ful nonsurgical cancer therapies eventually result in the activation of apoptosis in 
cancer cells [1]. Apoptosis can be triggered internally (via an “intrinsic” pathway) 
following DNA damage or other intrinsic stimuli, or externally (via an “extrinsic” 
pathway) following the binding of “death” ligands to “death” receptors. Receptor- 
induced apoptosis raised therapeutical interest as anticancer strategy for at least two 
reasons. Firstly it can be highly selective for certain cell types, ideally targeting only 
cancer cells. Secondly it does not require a functional p53 protein, which is fre-
quently mutated in tumor cells, providing resistance to chemotherapeutic drugs 
relying on the DNA damage response. Several death ligand–receptor pairs exist. 
While TNFα (and its receptors TNFRs) and CD95L (and its receptor CD95) were 
discovered first, TRAIL (and its receptors DRs) has the highest selectivity towards 
cancer cells [2]. From a largest perspective, the latter is also a reference system 
illustrating how complex circuits involving graded and competing molecular signals 
can generate binary decisions. Because of its high interest, both for systems biology 
and therapeutics, tremendous research efforts have been done to better understand 
its functioning [3–8].

The control and regulation of apoptosis involve many genes whose products 
mediate numerous protein–protein interactions, post-translational modifications, 
transcriptional regulations, etc., yielding a highly complex picture. The sensitivity 
of cells to a given death ligand stimulation is multifactorial, and the effect of genetic 
perturbations on cell survival is highly context-dependent. As a result, the interpre-
tation of results obtained on a specific cell line and for a few genetic perturbations 
or conditions is delicate and cannot be readily generalized. The system model para-
digm is well suited to deal with this complexity. Computational approaches attempt 
to integrate known mechanisms and interactions into mathematical models, whose 
predictions can be used to propose new experiments for model validation. When 
applied to apoptosis, system level modeling, which started approximately 15 years 
ago, was indeed instrumental in improving our understanding of this complex pro-
cess. This was achieved by tightly integrating data of increasing quality and by 
increasing the scope and/or level of details of models. Excellent reviews discuss 
these modeling works [9–15].

Despite these achievements, important fundamental questions remain to be 
answered, especially on the role of phenotypic heterogeneity and how it impacts the 
response to, as well as how it is changed by, treatments by death ligands [16]. Why 
do isogenic cells respond differently to the same amount of death ligand? Indeed, it 
is often the case that not all treated cells die, and when cells die, their death times 
are very heterogeneous. How different from dying cells are surviving cells before 
treatment (i.e., why cells survive)? How different are surviving cells from what they 
were just before treatment (i.e., who are survivors)? Can these differences explain 
the decreased efficiency of subsequent treatments (i.e., what make cells more 
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 resistant)? Importantly, the two last questions, while critical for understanding the 
efficiency of treatments, are starting to be addressed only since very recently [17, 
18]. Here, we review the contributions of system modeling studies to our under-
standing of receptor-induced apoptosis with a specific focus towards those impor-
tant questions. We do not aim to exhaustively describe all the modeling work done 
on receptor- induced apoptosis. Rather, we describe a few key studies that are highly 
illustrative of how the system modeling approaches can provide decisive insights.

12.2  Modeling the Biochemistry of Receptor-Induced 
Apoptosis

12.2.1  Early Efforts: From Known Players and Reactions 
to a System Model

Many proteins playing a key role in receptor-induced apoptosis are known since 
decades, together with a qualitative picture of how they interact, either to convey 
external death signals to promote the activation of the core executioners of apopto-
sis or on the contrary to act as “inhibitors” or “blockers” of death signalling. 
Figure 12.1 provides a schematic overview of apoptotic pathways.

Despite this qualitative knowledge, how precisely cell response emerges from 
protein interactions in different cell lines and in response to stimulations of different 
strengths was not well understood. This led Fussenegger and colleagues [19], and 
later Eissing and colleagues [20], to quantitatively interpret such qualitative schemes 
and translate them into mathematical models describing the kinetics of the underly-
ing biochemical reactions using the simplest quantitative mathematical framework, 
ordinary differential equations (ODEs). Assuming specific values for parameters 
(reaction rate constants and protein initial concentrations) and specific initial condi-
tions (initial protein concentrations), these models can be used to simulate the tem-
poral evolution of molecular species concentrations.

These early studies did not quantitatively compared simulation results to data. 
Their explanatory power was therefore not well established. Still, by studying how 
simulated cell behaviors depend on the different parameters, these models provided 
interesting qualitative insights on the structure of the pathways, that is, on the 
molecular implementation of receptor-induced apoptosis. For example, Eissing and 
colleagues rightfully concluded from their model that there must be a caspase-8 
inhibitor to allow for both (1) fast kinetics of apoptosis at sufficient stimulation 
levels and (2) the existence of a threshold stimuli intensity below which apoptosis is 
not triggered [20].
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12.2.2  Tight Integration of Kinetic Modeling and Quantitative 
Experimental Data Revealed Key Mechanistic Features 
of Receptor-Induced Apoptosis

After those early efforts, several groups employed approaches that integrated more 
tightly the construction and analysis of ODE models of receptor-induced apoptosis 
with experimental data. These approaches have been particularly fruitful. Indeed, 
they revealed several key mechanistic features of receptor-induced apoptosis.

A pioneering work for the systems biology of apoptosis is the study of CD-95 
induced apoptosis by Bentele et al. [21]. The authors constructed an ODE-based 
kinetic model combining mechanistic and “black box” reactions. Their initial model 
contains 41 species, 50 unknown parameters and is notably detailed regarding reac-
tions taking place at the death-inducing signalling complex (DISC): the requirement 
for the recruitment of two pro-caspase-8 molecules for their activation, as well as 

Fig. 12.1 Schematic representation of extrinsic and intrinsic apoptosis pathways at the molecular 
level. Only the main actors and interactions are represented. Death ligands bind their cognate 
receptors and promote assembly of DISCs complexes that can lead to the activation of the critical 
initiator caspases caspase-8/10. Initiator caspases can activate effector caspases either directly or 
by promoting the activation of the mitochondrial apoptosis pathway via Bid. This realizes a con-
nection with the intrinsic apoptosis pathway, also activating the mitochondrial pathway and even-
tually activating effector caspases. Reprinted from [11], with permission from Elsevier
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the competitive recruitment of cFLIP, were detailed. In order to reduce the risks of 
overfitting and detect parameter non-identifiability, the authors used a sensitivity 
analysis approach to reduce model complexity before testing the model against 
data. In order to test the model, they obtained quantitative data characterizing the 
kinetics of caspase activation for several stimulation strengths. The data consisted in 
quantitative western blots corresponding to protein concentrations averaged over 
the cell population. The model predicted a threshold for ligand concentration below 
which no death should be seen, and this prediction was validated experimentally. In 
the model, the existence of this threshold is caused by cFLIP, which incorporates 
into newly assembled DISCs and thus blocks pro-caspase-8 processing. Hence, 
downstream death signalling only occurs for stimulation doses high enough to 
enable the assembly of a sufficient number of DISCs, capable of overcoming this 
blockade. By using an inhibitor of protein synthesis (cycloheximide, abbr. CHX) 
and exploiting differences in protein half-lives (cFLIP is short-lived whereas pro- 
caspase- 8 is long-lived), they decreased cFLIP levels while preserving pro- caspase-8 
levels and observed the predicted significant decrease of the threshold needed to 
obtain cell death.

One main limitation of the approach by Bentele and colleagues is the use of 
population-level measurements for quantifying caspase activation. It was already 
known that the kinetics of caspase activation was different in different cells. More 
precisely, single-cell reporters for probing cytochrome c release [22] and effector 
caspase activation [23] revealed that these events are rapid and relatively invariant 
in terms of duration and intensity from one cell to another and for different stimulus, 
whereas their initiation times are highly variable. An important, although often 
implicit assumption in kinetic models of biochemical pathways is that they repre-
sent reactions taking place in individual cells: an enzyme in one cell does not cata-
lyze reactions in another cell. Therefore, in the presence of heterogeneity it is not 
appropriate to reason in terms of population-averaged quantities. Single-cell report-
ers enabling to measure the abundance or activity of biochemical species with live- 
cell imaging are therefore appealing tools to test and interrogate on a proper footing 
kinetic models. And indeed, single-cell reporters in combination with kinetic mod-
eling revealed a number of key mechanistic features of receptor-induced apoptosis.

The first study integrating kinetic modeling with such single-cell data investi-
gated apoptosis induced by staurosporine [24]. Although staurosporine does not 
induce apoptosis via death receptors, it triggers MOMP (mitochondrial outer mem-
brane permeabilization) and then a rapid, all-or-none effector caspase activation. 
These molecular events form the downstream part of both extrinsic and intrinsic 
apoptosis pathways. The authors focused on the events directly following MOMP, 
using realistic kinetics of cytochrome c and Smac release and apoptosome forma-
tion as inputs to their model, which then predicted effector caspase activation kinet-
ics. The amount of XIAP was found to be a key factor in the kinetics of effector 
caspase activation following MOMP.  Interestingly, the model predicted the exis-
tence of a small range of XIAP concentrations for which MOMP is followed by a 
slow and partial effector caspase activation, a prediction that was then confirmed 
experimentally.

12 System Modeling of Receptor-Induced Apoptosis



296

Albeck and colleagues were the first to integrate, in a single model, initiator cas-
pase activation (via TRAIL binding to death receptors), MOMP regulation and effec-
tor caspase activation [25]. The model featured 58 species (native protein and protein 
complexes) and 70 parameters (Fig. 12.2, top left). Instrumental in their work was the 
development of a single-cell reporter for initiator caspase activity [26], which showed 
that this activity slowly rises at a variable rate between cells during the pre-MOMP 
period, and that despite this increasing activity, no significant effector caspase activity 
is observed; the latter arises suddenly and completely following MOMP (Fig. 12.2, 
top right). The model revealed that XIAP enables this all-or-none switching behavior 
not only by competitive binding of caspase 3, but also by promoting its degradation 
via the proteasome (Fig. 12.2, top center). Another mechanistic insight brought by 
this model relates to the role of network topology in generating snap-action behavior 
at the level of MOMP (Fig. 12.2, bottom): Bax multimerization and mitochondrial 
transport can quantitatively explain the observed behavior despite the presence of 
Bcl2, whereas a simple competition model between activated Bax and Bcl2 could not.

Other remarkable works relying on such an integrated approach of quantitative 
experiments with kinetic modeling include the investigation of the activation of 
NF-κB signalling in parallel to death signalling in response to CD95-L exposure [27].

Fig. 12.2 Key mechanistic features of apoptosis revealed by integrated kinetic modeling and 
single- cell experiments. A relatively complete model of TRAIL-induced apoptosis by Albeck and 
colleagues developed in combination with new single-cell reporters for initiator caspase activity 
and MOMP allowed new mechanistic insights [25]. For example, XIAP control of caspase-3 activ-
ity during the variable pre-MOMP delay does not rely solely on competitive binding but also on 
its ability to promote caspase-3 proteasomal degradation (right). Another mechanistic insight 
relates to the role of network topology in generating snap-action behavior at the level of MOMP 
(bottom). Bax multimerization and mitochondrial transport can explain observed behavior, as 
opposed to a simple competition model between activated Bax and Bcl2. Figure elements repro-
duced from [25, 26]
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12.3  Modeling Populations of Individual Cells: The Role 
of Heterogeneity in Protein Levels

The previous studies shed light on how snap-action behaviors at the level of MOMP 
and effector caspase activation enable a tightly constrained all-or-none control over 
apoptosis commitment. Such an all-or-none control is probably beneficial at the 
organism level, because partial effector caspase activation is genotoxic and could 
result in potential harmful mutations. But why different cells from the same cell line 
submitted to the same stimulus in the same conditions trigger MOMP after a highly 
variable delay from one another? Also, in most studies discussed so far, cells were 
co-treated with the protein synthesis inhibitor cycloheximide (CHX). Blocking pro-
tein synthesis is interesting to disentangle the influence of signal transduction path-
ways from the influence of downstream genetic regulations. However, in these 
conditions, all cells eventually die, whereas in normal conditions, a fraction of the 
cell population often survives, a property of vital importance in the context of ther-
apy. What are the origins of fractional killing? Are the mechanisms responsible for 
MOMP timing variability in treatments with CHX also involved in fractional killing 
without CHX?

An important study from the Sorger group brought key insights into these ques-
tions [28]. Using live-cell microscopy, the authors followed the fate of individual 
HeLa cells after exposure to TRAIL + CHX or TRAIL alone treatments. In both 
conditions, a significant variability was observed, in death times for TRAIL + 
CHX treatments, and in cell fate and death times for TRAIL alone treatments. 
Importantly, to investigate the role of differences in cell state that exist across cells 
at the time of treatment in determining cell fate and death times, they recorded 
normal cell proliferation for a duration of about one cell cycle before applying the 
treatment in order to identify (1) pairs of cells that are sisters and (2) how much 
time elapsed between their division and treatment. Such lineage information was 
exquisitely insightful (note that similar experimental observations were made ear-
lier by Rehm et al. [29] and later by Bhola and Simons [30]). First, in the TRAIL 
+ CHX treatment, recently divided sister cells displayed a strong correlation in 
their death time, despite the high overall variability of death time among cells. 
This established that (1) death time variability is caused by preexisting differ-
ences, conserved at cell division; and (2) in presence of CHX, TRAIL signalling 
is almost entirely deterministic (but again, depends on preexisting differences).  
In other words, because one could  accurately predict the fate of one recently 
divided cell by observing the fate of its sister, there is no significant randomness 
in the signalling reactions taking place between TRAIL + CHX exposure and 
apoptosis commitment.
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This led Spencer and colleagues to the hypothesis that differences in initial levels 
for proteins involved in TRAIL apoptotic signalling are the main determinants of 
cell fate variability. Mathematical modeling was used to test further this hypothesis 
(Fig. 12.3). They relied on the same kinetic ODE model (with minor modifications) 
of the protein–protein reactions mediating TRAIL apoptotic signalling as in their 
previous study [25]. However, instead of using a single population-averaged value 
for the initial level of each protein in the pathway, they created an in silico cell popu-
lation by sampling many times protein levels from distributions, meant to reproduce 
the natural variability in protein levels within a population of HeLa cells (some of 
those distributions were actually measured experimentally using immunofluores-
cence and flow cytometry). Good agreement between model predictions and data 
for TRAIL + CHX treatments was then obtained (Fig. 12.3), therefore supporting 
that in these conditions initial variability in protein levels are the main determinants 
of the observed death time variability.

Fig. 12.3 Initial variability in protein levels explains variability in the timing of death. Spencer 
and colleagues combined a previously proposed ODE model of TRAIL-induced apoptosis signal-
ling with the use of distributions for the initial values of proteins levels as could be measured by 
immunochemistry and flow cytometry to represent the heterogeneity in protein levels existing in 
cell populations [28]. Then they recorded the variability in the timing of death for different doses 
of TRAIL and in presence or absence of cycloheximide within the in silico cell population. The 
resulting distributions closely resemble the distributions obtained from experimental data. Figure 
elements reproduced from [28]
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Additionally, when considering pairs of sister cells born long before TRAIL + 
CHX treatments, the correlation between their death times continuously decreases, 
showing that the cell determinants setting this death time fluctuate over time with a 
timescale of the order of a cell cycle. Notably, protein levels in human cells have 
been shown to fluctuate with similar time scales [31]. It is therefore probable that 
the natural slow fluctuations of protein levels are responsible for the decorrelation 
of sister cell fates after their division. For TRAIL alone treatments, a similar effect 
is seen, but firstly the correlation for recently divided cells is reduced compared to 
TRAIL + CHX treatments, and secondly this correlation decreases markedly faster 
with sister cells’ age. Because the primary effect of CHX is to block protein synthe-
sis, this also strongly suggests that cell fate variability in TRAIL-induced apoptosis 
originates from synthesis-induced fluctuations in protein levels.

Note that by nature, the model used by Sorger and colleagues cannot account for 
the sister cell data, a limitation inherent to all deterministic models in which cell-to- 
cell differences are static, that is, cell-to-cell differences are modeled by distribu-
tions of values for initial protein concentrations or for time-invariant parameters. 
Such models do not explain how cell-to-cell variability can be generated, which is 
indispensable if reestablishment of cell-to-cell variability after TRAIL application 
should be understood. A prime candidate for the (re)generation of cell heterogeneity 
is stochastic protein fluctuations that are missed out in the previous approach. Note 
also that no attempt to reproduce cell fate variability data in TRAIL alone treat-
ments, a critical observation, was made. One can cite two reasons. Firstly, the model 
was trained against TRAIL + CHX data, removing the influence of many parame-
ters constraining protein production. Secondly, fractional killing was thought to 
result mostly from the activation of survival pathways and these pathways were not 
included in the model.

Among the other modeling studies investigating cell-to-cell variability in receptor- 
induced apoptosis, it is worth mentioning the work by Toivonen and colleagues [32]. 
These authors extended the model of CD-95L induced apoptosis from [21] with vari-
able synthesis and degradation rates for the short-lived protein c-FLIP, and their 
analysis predicted c-FLIP targeted degradation as being a fundamental determinant 
of death receptor responses, in agreement with experimental observations.

12.4  Modeling Different Cell Lines and Their Different 
Sensitivities to Receptor-Induced Apoptosis

From the discussion in the previous section, we see that differences in protein levels 
could be a main determinant of cell fate differences. Thus, knowing the expression 
levels of the proteins involved in extrinsic apoptosis in a given cell line could help 
predicting its sensitivity to different death ligand stimulations. Stated differently, we 
adopt here the viewpoint in which cell lines do not differ by the topology of their 
pathways but rather by the levels or more specifically by the distributions of the 
proteins involved in these pathways. This idea motivated another study by the 
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Sorger group [33]. Using their previous model as a reference for the rates of bio-
chemical reactions of extrinsic apoptosis, they studied the biochemical basis of the 
Type I/Type II behaviors. Type I (II) behavior refers to cells that do not require (do 
require) MOMP to commit to apoptosis after death ligand stimulation. As a conse-
quence, a strong overexpression of Bcl2 proteins renders cells resistant to death 
ligand stimulation only in type II cells.

The authors could successfully classify the Type I/II behavior of a set of cell lines 
solely based on the expression levels of the proteins involved in apoptotic signal 
transduction. Their approach was based on direct finite-time Lyapunov exponent 
(DLE) analysis, which measures the influence of changes in initial protein concen-
tration on the future states of the system. More precisely, when computing DLEs for 
different initial conditions, they obtained a narrow region of high DLE values, i.e., 
a region where small changes in initial conditions lead to large deviations in cell 
state after stimulation, separating two large regions having comparatively low DLE 
values (Fig. 12.4, bottom left). When positioning cell lines on this space based on 

Fig. 12.4 Simulating the differential sensitivity of cancer cell lines to receptor-induced apoptosis. 
Different cell lines express extrinsic apoptosis proteins at different levels (leading to different 
distributions of single-cell level expression), and those differences a priori impact on their response 
to receptor stimulation. Aldridge and colleagues [33] used Lyapunov exponent analysis to study 
and demonstrated its ability to classify and compare different cell lines. Stoma and colleagues [34] 
proposed an alternative to Lyapunov exponents, Signal Temporal Logic (STL), that allows to for-
mally encode behavioral differences as measured by various experimental assays. Figure elements 
reproduced from [33, 34]
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measured expression levels, they found that Type I and Type II cell lines were on 
opposite sides of the high-DLE region, while cell lines exhibiting mixed behaviors 
were close to it.

One limitation of the DLE analysis is that the DLE is a number that is difficult 
to interpret. It reflects a sensitivity of the future states to the initial conditions, but 
it does not give information about what is perturbed in the states. In addition, one 
has to choose a time horizon to compute DLEs, which might have a strong influ-
ence on the results. We have therefore proposed another approach, based on Signal 
Temporal Logic (STL) instead of DLE [34]. Temporal logics are flexible property 
specification languages that allow describing expected features of behaviors. 
Experimentally observed behaviors are explicitly encoded in STL. This approach 
allowed us to discover that the notion of Type I and Type II has limits, as there exist 
several interpretations of being a Type I or a Type II cell which are not equivalent 
(Fig. 12.4, bottom right).

The idea that differences in protein expression levels between cell lines could 
predict differences in response to death ligand stimulation from a mechanistic 
model of extrinsic apoptosis was also used in other studies [35]. Recently, a similar 
approach has been applied to patient-derived cell lines to predict their sensitivity to 
treatment [36], although here they use statistical modeling (rather than mechanistic 
modeling) to map expression profiles to sensitivity.

12.5  Modeling Fluctuations of Protein Levels to Extend 
the Temporal Scope of Existing Models

Until now, the modeling approaches we have discussed represent the naturally aris-
ing differences in protein levels between individual cells of a given cell line by static 
distributions, and such distributions are then used as initial conditions for determin-
istic models of extrinsic apoptosis signalling (see Sect. 12.3). In particular, one of 
the most important mechanisms that generate these distributions, the burstiness of 
gene expression and therefore the stochastic nature of protein turnover, is not 
accounted for in the above-mentioned models. Whether such fluctuations are 
responsible for the observed decrease of the correlation of death times of sister cells 
with their age at treatment as discussed in Sect. 12.3 is an interesting question. Not 
accounting for protein fluctuations fundamentally limits the temporal scope of a 
given protein–protein interaction model, even if its kinetic parameters are appropri-
ately constrained. With this approach, we addressed the question of what are surviv-
ing cells after treatment, and hence what will be their resistance to future treatment 
applications (Fig. 12.5, top) [18]. It relies on modeling stochastic gene expression 
(stochastic switches of the promoter between an active and an inactive transcrip-
tional state, and stochastic production and degradation of the mRNA) and protein 
turnover for all (native) proteins appearing in the model. As a result, protein levels 
slowly fluctuate in each individual cell such that, overall, the distributions of the 
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protein concentrations in the whole cell population are the ones observed in [28]. 
This means that the naturally occurring cell-to-cell variability, previously accounted 
by predetermined distributions for initial protein concentrations, is now an emerg-
ing property of the model.

Fig. 12.5 Systematic, parsimonious modeling of stochastic gene expression together with TRAIL 
apoptotic signalling explains fractional killing and predicts transient cell fate inheritance and tran-
sient resistance acquisition. (a) Schematic description of the modeling approach. (b) Results of the 
approach when applied to model and data of Spencer and colleagues [28]. (c) Simulation of con-
secutive TRAIL treatments reproduces the observed transient resistance acquisition [18]. Figure 
elements reproduced from [18]
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While such model extension a priori introduces many unknown parameters, we 
found that using simple constraints from the literature on parameter values one 
readily obtains good approximations of protein fluctuations for most proteins. Only 
short-lived proteins necessitate particular attention. This finding is a cornerstone of 
the approach, as it allows to strongly reduce the number of unconstrained parame-
ters, facilitating exploration of the parameter space and reducing the risks of overfit-
ting. We applied this modeling approach to extend the model of TRAIL-induced 
apoptosis used by Spencer and colleagues. Among the 17 native proteins appearing 
in the model, only gene expression parameters for Flip and Mcl1 (known to be very 
short-lived at both the mRNA and protein levels) were used for fitting the data, 
while standard parameter constraints were used for all others. The model could 
quantitatively fit cell death distributions and cell survival fractions for both TRAIL 
+ CHX and TRAIL alone treatments (Fig. 12.5, middle, left). Moreover, sister cell 
data (decrease in their death time correlation as they age) that have not been used to 
fit our model could be predicted (Fig.  12.5, middle, right), thus validating the 
approach.

The finding that cell survival does not require TRAIL-induced activation of 
survival pathways, but can occur solely from the interplay of stochastic gene 
expression, fast turnover of certain anti-apoptotic proteins, Flip and Mcl1, and 
rapid degradation of activated forms challenges the classical view about the 
role of survival pathways in response to TRAIL [37]. While it does not mean 
that survival pathways do not play a role in cell survival after TRAIL exposure, 
our results strongly suggest that they are not the sole contributors to cell 
survival.

Finally, because the model can predict changes in cell states (i.e., cell protein 
content) of the population caused by a first treatment as well as the recovery of cells 
to their normal states (i.e., initial protein distributions) after treatment based on 
stochastic gene expression and protein turnover, the efficiency of a second treatment 
as a function of the time between treatments could be investigated. In agreement 
with data, simulations showed a marked but transient increase of the population 
resistance after a treatment (Fig.  12.5, bottom). We therefore provide a simple 
mechanistic explanation to the observed reversible resistance of cells to repeated 
treatments.

12.6  Conclusions and Perspectives

In this chapter, we survey how system modeling of receptor-induced apoptosis has 
been instrumental in improving our understanding of this process at several levels: 
the molecular level, the level of cellular decisions between life and death, and the 
level of cell populations exhibiting various degrees of resistance as a function of 
their protein expression profiles or their treatment history.

12 System Modeling of Receptor-Induced Apoptosis
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More precisely, ordinary differential equations models recapitulating known 
reactions between proteins during apoptosis signalling are useful when compared to 
short-term (a few hours) population data about protein level and state kinetics (Sect. 
12.2). They allow verifying that the structure of known reactions is compatible with 
what is experimentally observed and can provide estimates of the associated bio-
chemical rates (although parameter non-identifiability often prevents the obtention 
of unique estimates). Comparing model predictions with population data has funda-
mental limitations, and comparison to single-cell data (obtained by means of cell- 
level reporters for well-defined biochemical activities or events) is a priori more 
meaningful. Indeed, in the context of receptor-induced apoptosis, it has revealed 
important kinetic features regarding MOMP regulation and effector caspase activa-
tion (Sect. 12.2).

Still, there are two difficulties arising when comparing ODE models of protein–
protein reactions with such single-cell data. First, protein synthesis, which is noisy 
and hence generates differences from cell to cell, can have an impact on signalling 
dynamics at the protein level. This effect can only be temporally mitigated by using 
protein synthesis inhibitors like cycloheximide. Second, model predictions depend 
on initial conditions, such as the prestimulation levels of the protein involved in 
receptor-induced signalling. We have seen that most of the variability in death tim-
ing following TRAIL (and cycloheximide) treatment can be explained when realis-
tic random distributions of initial protein levels are used as initial conditions for an 
ODE model of TRAIL-induced apoptosis signalling (Sect. 12.3). This result is 
important as it demonstrates that TRAIL-induced apoptosis signalling is not intrin-
sically noisy, and that cell state (i.e., the levels of apoptosis proteins) differences at 
treatment time are a major determinant of cell fate variability. Indeed, we have seen 
that the protein expression profiles of different cell lines can inform about their 
sensitivity to extrinsic death stimulation when used as initial conditions of a single 
(i.e., the same for all cell lines) ODE model of apoptotic signalling (Sect. 12.4).

However, while cell fate is almost fully determined by cell state at treatment time 
when protein synthesis is blocked, it is only partially the case in normal treatment 
conditions, in which survival of a fraction of the population is often observed. 
Indeed, protein synthesis can interact with receptor-induced signalling and steer cell 
fate in one direction or another. In Sect. 12.5, we see how systematic but parameter- 
parsimonious modeling of stochastic gene expression within ODE models of signal 
transduction dynamics can explain important observations on the dynamics of cell- 
to- cell variability in TRAIL-induced apoptosis. This approach allows extending the 
temporal scope of ODE models of receptor-induced apoptosis. This is required to 
investigate the response of cell populations to multiple treatments separated in time, 
for which resistance acquisition is very often observed. An important prediction of 
such models is that transient resistance acquisition can occurs in the absence of 
stimulus-induced pro-survival transcriptional activity.

Despite those promising advances, many questions remain without clear answers. 
For example, while the important role in cell survival of the targeted degradation of 
many pro- and anti-apoptotic proteins is increasingly recognized [38], accurate esti-
mates of the corresponding rates are not available, and to which extent those rates 
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fluctuate in single cells and vary from cell to cell is not known. Experiments using 
proteasome inhibitors are difficult to interpret because they have a global (but not 
necessarily identical) effect on all degradation rates. More targeted approaches (for 
example using specific single-cell reporters) could be very useful to better under-
stand the role of targeted degradation in receptor-induced apoptosis.

While current models of receptor-induced apoptosis can be quite large (up to 100 
species and reactions), they are often omitting structural details either because those 
details are not understood very well or because a simplifying representation is delib-
erately preferred. For example, the ligand-induced receptor clustering at cell sur-
face, the processing of caspase-8 at the DISC, the role of the different Flip isoforms 
in that processing, and the interactions of all MOMP regulators at the mitochondrial 
surface are generally significantly simplified. Such simplified representations can 
be accurate and therefore sufficient to address many questions. Still, to test and 
improve our molecular-level understanding of receptor-induced apoptosis, more 
detailed mechanisms can be introduced into existing models, and model predictions 
can be compared to new data generated with adequate tools (such as relevant single- 
cell reporters). Without the “right” data, increasing model complexity is probably 
vain.

Finally, while mathematical models of receptor-induced apoptosis start to 
address the question of long-term behavior of cell populations repeatedly treated by 
death receptor agonists, the amount and quality of corresponding experimental data 
is very scarce. Most in vitro studies still only measure the efficiency of one-time 
treatment to model cell lines, and repeated treatments are only seen in mouse xeno-
grafts studies, in which time points and measurements are limited, and many effects 
related to the in  vivo context can affect the response. Quantitative population 
dynamics data (i.e., cell proliferation and death rate as a function of time) for cell 
lines cultured in vitro and submitted to repeated treatments could prove very useful 
to better understand resistance acquisition, and to map it to molecular mechanisms 
with the aid of mathematical models. Also, the potential impact of spatial organiza-
tion of the cells in tumors may generate further inhomogeneities that are not cap-
tured by models disregarding space, and hence a full understanding will eventually 
have to explore the possible effects of space.
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