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Abstract

Motivation: Quantitative models are increasingly used in systems biology. Usually, these quantita-

tive models involve many molecular species and their associated reactions. When simulating a tis-

sue with thousands of cells, using these large models becomes computationally and time limiting.

Results: In this paper, we propose to construct abstractions using information theory notions.

Entropy is used to discretize the state space and mutual information is used to select a subset of all

original variables and their mutual dependencies. We apply our method to an hybrid model of

TRAIL-induced apoptosis in HeLa cell. Our abstraction, represented as a Dynamic Bayesian

Network (DBN), reduces the number of variables from 92 to 10, and accelerates numerical simula-

tion by an order of magnitude, yet preserving essential features of cell death time distributions.

Availability and Implementation: This approach is implemented in the tool DBNizer, freely avail-

able at http://perso.crans.org/genest/DBNizer.

Contact: gregory.batt@inria.fr or bgenest@irisa.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quantitative models play an ever increasing role in systems and

synthetic biology. Various modeling frameworks can be employed

depending on the specificities of the studied system. One can men-

tion ordinary differential equation (ODE) models for deterministic

systems, continuous time Markov chain (CTMC) models for sto-

chastic systems and hybrid stochastic/deterministic (HSD) models.

Obtaining analytical solutions of these models is almost always im-

possible. Moreover, because of the ever-increasing size and com-

plexity of these models, even numerical simulation can become

challenging. When a very large number of simulations are necessary

this becomes all the more difficult. This is notably the case for multi-

scale simulations in which the dynamics of a tissue or an organ,

made of hundreds of thousands of cells, each described by a complex

model, has to be analyzed. We propose to build an abstracted model

using thousands of simulations of the original model and then use

this abstracted model to as a place needed millions of simulations,

speeding up the simulation of the tissue.

A range of different approaches for computing model abstrac-

tions has been proposed in the past. For example, finite state projec-

tion (Munsky and Khammash, 2006), moment closure (Gillespie,

2009) methods, coarse-graining (Feret et al., 2009) and trajectory-

based state coarsening (Michaelides et al., 2016) enable efficient

(approximate) simulation of CTMC models. ODE models can be

abstracted using methods exploiting time scale separation

(Gunawardena, 2014), tropical analysis (Radulescu et al., 2015), or

stochastic discrete abstraction (Liu et al., 2011b). The latter study is

the most related to the work in this paper.
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The approach proposed by Liu and colleagues has been shown

to approximate well the quantitative dynamics of a large set of ODE

models of signal transduction pathways (Liu et al., 2011a,b).

Moreover, it has lead to novel findings in immune system regulation

(Liu et al., 2011a). The approach is based on Dynamic Bayesian

Networks (DBNs), a class of probabilistic graphical models. In this

approach, each dimension is partitioned into a few intervals, leading

to a hyper-rectangular partition of the state space. Ideally, one

would like to know the probabilities of the transitions of the system

state from any rectangular region to any other region at regular time

instants, which would then provide a coarse but very simple means

to simulate approximately the behavior of the system. For non-toy

models, storing and reusing this information for simulation is com-

putationally intractable. Instead one can compute and store—in the

so-called conditional probability tables (CPTs)—the probabilities

that a given variable remains in its interval or switches to another

one given the values of the variables that influence the variable of

interest at the previous time instant (‘parent’ variables in the DBN

terminology). In its standard implementation, parents are the set of

variables that directly appear in the ODE governing the tem-

poral evolution of the variable of interest. We will show that this

choice of parents is not always appropriate: the quantitative infor-

mation they convey decreases with the increase in duration between

two successive instants in the DBN, for which concentrations of an-

cestors may be more correlated to the variable of interest than the

concentration of its direct parents. This choice of parents may lead

to significant differences between the original and the abstracted

dynamics.

In this paper, we propose to use elements from information the-

ory such as entropy and mutual information to accurately abstract

the dynamics of pathway models. Rather than using a syntactic cri-

terion to define parents, parents are selected so as to maximize the

mutual information between their previous values and the current

value of the variable of interest. Therefore, the temporal evolution

of the individual variables is defined with respect to the past

values of the maximally informative variables. Going further, one

can wonder whether the values of variables are all equally important

to predict the outcome of the pathway. Using again the notion

of mutual information, we propose a method to identify a highly in-

formative subset of model variables and define a low-dimensional

DBN abstraction of the original system. The techniques we pro-

pose, implemented in the freely available tool DBNizer, are valid

for general classes of models, including ODE, CTMC and HSD

models.

To illustrate the effectiveness of our methods and algorithms, we

will focus on a particularly challenging problem. Specifically, we

will study a model of the TRAIL-induced apoptosis pathway for

HeLa cells (Bertaux et al., 2014). This system presents a stiff behav-

ior. Indeed, the gradual activation of upstream proteins (initiator

caspases) may result in a sudden activation of downstream proteins

(executioner caspases) leading to cell death (Albeck et al., 2008).

Also cell-to-cell variability plays an important role. Even large quan-

tities of TRAIL do not induce apoptosis in all cells (e.g. only 70%

die after 8 hours for a 250 ng/ml TRAIL treatment) (Spencer et al.,

2009). Moreover, survivors are transiently more resistant to TRAIL

(Flusberg et al., 2013). Several models have been proposed to ex-

plain these observations. Sorger and colleagues proposed an ODE

model focusing on signal transduction able to explain fractional kill-

ing (Spencer et al., 2009). The initial state of the cell (i.e. the initial

level of the signalling proteins) played a fundamental role in the

death/survival outcome. This model was further extended so as to

account for stochastic protein turnover, resulting in an HSD model

(Bertaux et al., 2014). This model was additionally able to explain

reversible resistance. The HSD model is made of 58 ODEs, coupled

with 17 2-variable stochastic models for protein turnover. Using

optimized implementations, the simulation of the behavior of few

cells (<1000) over short time durations (<1 day) is bearable.

However, simulating the behavior of tissues or of small spheroids

exposed over extended durations (e.g. several weeks) to repeated

TRAIL treatments becomes a serious issue.

Using our strategy we obtained a low-dimensional DBN model

(10 variables instead of 92) that presented a very good agreement

with the original HSD model (< 1% difference in cell death prob-

ability) and whose numerical simulation is faster by an order of

magnitude.

2 TRAIL-induced apoptosis in HeLa cells

TNF-Related Apoptosis Inducing-Ligand (TRAIL) is a protein that

is known to induce apoptosis in cancer cells and hence has been con-

sidered as a promising choice for anti-cancer therapeutic strategies.

The molecular events leading HeLa cells to die following TRAIL ap-

plication are well known (see Fig. 1). It is observed that surviving

cells develop a temporary resistance to TRAIL treatments over time

(Flusberg et al., 2013). Understanding the mechanism by which iso-

genic populations of cells acquire resistance to TRAIL treatment

will be crucial to designing effective therapeutic strategies. Because a

quantitative understanding of these processes necessitates to account

for cell-to-cell variability, modeling and model analysis tools are ex-

pected to play an essential role.

In Bertaux et al. (2014), we proposed a model of TRAIL-induced

apoptosis combining a deterministic model for signal transduction,

as in the original model of (Spencer et al., 2009), and stochastic

models for protein turnover that capture cell-to-cell variability and

its dynamics. Using this low level biochemical model, in silico ex-

periments matched biological observations of fractional killing, cor-

related sister cell fate, and the time-dependent evolution of cell

resistance induced by a TRAIL treatment. While this detailed model

has been extremely useful for analyzing TRAIL induced apoptosis

its analysis was tedious since single-cell simulations needed to be re-

peated many times. This can become challenging when one wants to

Fig. 1. Main protein species and elementary reactions of the TRAIL-induced

apoptosis pathway modeled in Spencer and colleagues Spencer et al. (2009),

which were used as the basis for signal transduction part of the HSD model

(Bertaux et al., 2014). Signal transduction is initiated by the binding of TRAIL

to its receptor, and may subsequently lead to pores created in the mitochon-

dria outer membrane and eventually cell death. The white nodes are those

identified by our tool DBNizer as most important for cell death
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analyze the system in multi-scale settings, say modeling a tumor of

hundreds of thousands of cells over long time horizons for repeated

treatments. Instead, we propose here to abstract this model into a

(series of) high-level behavioral model(s). More efficient simulations

can then be performed using the abstract model(s).

3 Information theory-based abstraction

In this section, we describe our strategy to obtain a discrete prob-

abilistic structure that represents a system dynamics. In practice, our

algorithms will take as inputs a large set of trajectories sampled at

discrete time points. We will assume that this set represents all the

relevant dynamics of the original system.

The key steps of our approach include the identification of the

most important variables and the inference of the most informative

local dependencies between them. To do so, we will rely on well-

established information theory notions. As a first step, given that we

are interested in a discrete abstraction of the underlying system, we

will describe how to discretize the values of model variables using

entropy. After this, we will explain how using mutual information

our algorithm chooses a small subset of the most relevant variables

of the original system and then infers a directed graph of the most

important influences between them.

3.1 Entropy-based discretization
A simple and common strategy to discretize a variable is to get an es-

timate of the minimal (usually 0) and maximum value it can take,

and to partition this range into equal sized intervals, henceforth

called uniform discretization (see e.g. Liu et al., 2011a). In our case,

each variable describes the concentration level of a biochemical spe-

cies, ranging from very low to very high. This scheme has therefore

the advantage of being easily interpretable biologically.

The issue with using the uniform discretization is that for some

variables (e.g. polymerized molecules with non-linear dynamics),

most of the concentration values are condensed (e.g. with extremely

small values), with rare outliers in the extremes. In such cases, the

uniform discretization would bundle almost all the values together

in a single discretized interval, and be almost useless.

We propose to first use entropy to analyze the quality of the uni-

form discretization. The entropy H(X) of a K-valued discrete ran-

dom variable X is HðXÞ ¼ �
P

x2X pðxÞlogKðpðxÞÞ.
For instance, for a variable X, if the discretization scheme per-

fectly splits the data such that each of the K valuations has equal

probability, then its entropy is �K � ð1=KÞ � logKð1=KÞ ¼ 1. In the

worst case though when all the data point are concentrated in a sin-

gle interval of the random variable, the entropy is 0.

We use entropy to check the effectiveness of the uniform discret-

ization. Only for variables X with an acceptable level of entropy (we

chose HðXÞ � 0:4 for the HSD model), we stick with the uniform

discretization. Choosing other reasonable values (in ½0:25; 0:55�)
does not impact results much, see Supplementary Table S4.

For variables where uniform discretization had a low entropy

(<0.4), we resort to an alternate quantization algorithm which

automatically discretizes these variables with the goal of maximizing

the entropy. For this, we first sample enough simulations of the

HSD model to obtain a histogram of values for each variable, over

all time points. Based on these histograms, we partition the values to

have an equal number of samples in each interval. Further, we

use the Lloyd-Max (Lloyd, 1982; Max, 1960) discretization

algorithm which minimizes the distortion (quadratic distance of

the samples and their discrete values). The downside of this method

is that the biological interpretation can be lost. Additionally, this

increases the size of the internal representation of transition proba-

bilities in the abstract model. These are the reasons we use it

only for variables where uniform discretization results in a low

entropy.

3.2 Mutual information
Mutual Information (MI for short), commonly used in information

and probability theory, gives a quantitative measure of the correl-

ation between two variables. Mathematically, mutual information

evaluates how similar the joint distribution between two random

variables compared to the product of the marginal probabilities of

the individual variables. It is a convenient metric in our case for find-

ing the set of variables most relevant globally for the dynamics, and

also understanding the effective local dependencies between the vari-

ables. In formal terms, given three discrete random variables X,Y

and Z, the mutual information MIðX; YjZÞ between X and Y condi-

tioned on Z is given by:

MIðX; YjZÞ ¼
X
z2VZ

X
y2VY

X
x2VX

pðx; y; zÞ log
pðx; y; zÞpðzÞ
pðx; zÞpðy; zÞ

� �

where VR is the set of values of variable R 2 fX;Y;Zg, and pðx; y; zÞ
is the joint probability that X¼x, Y¼ y and Z¼ z.

3.3 Inferring key random variables
In high-dimensional dynamical systems, not all variables convey the

same quantity of information on the dynamics. In order to define a

set of important variables, we propose to use mutual information

between variables and the signal of interest. In the apoptosis path-

way, we are interested in the cell fate (dynamics of death). The latter

is modeled as a binary variable D: it represents if the cell was alive

or dead 8 hours after exposing the cell to 250 ng/ml TRAIL (death is

defined by a cPARP concentration threshold of 100 000 units in the

HSD model (Bertaux et al., 2014)).

We first compute for each variable the mutual information be-

tween its initial configuration and the cell fate. A simple way of

choosing relevant variables is to select the k variables having the

highest mutual information w.r.t the signal of interest (here D).

However, doing so is not necessarily a good choice. For instance,

assume that variables X and Y have very similar dynamics. Hence

MIðD; XÞ and MIðD; YÞ are very similar (say high). However, select-

ing both variables {X, Y} is not efficient as the value for (X, Y) does

not bring much more information than say X alone. This can be

automatically detected by considering MIðD; YjXÞ, which would be

much lower than MIðD; YÞ. In the extreme case where X¼Y, we

have MIðD; YjXÞ ¼ 0.

Consequently, we adopted the following scheme. First we select

the variable, say X1, having the highest mutual information with D,

MIðD; X1Þ, and hence being the most important variable for its ef-

fect on death. Then we select the second variable, say X2, as the one

that, conditioned on X1, has the highest mutual information with D,

MIðD; X2jX1Þ. We continue this for k steps until the mutual infor-

mation, given by MIðD; XkjX1 � � �Xk�1Þ, is sufficiently low. At this

stage we stop our computation.

While this identifies variables (which have an initial value) that

have a considerable impact on death, it may miss some key inter-

mediate variables important for conveying the signal of death. We

will explain in Section 4 how to find such variables.
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3.4 Inferring local dependencies between key variables
A crucial step towards constructing an accurate abstraction is to find

the set of important local dependencies between the identified vari-

ables. Our strategy to find those is again to rely on mutual infor-

mation. Let V ¼ fv1. . . :vkg be the k identified variables, and

T ¼ f0; 1 . . . :t � 1g be the discretized set of t time points.

3.4.1 Direction of local dependencies

We first build the directed graph based on the reaction network,

GRN ¼ ðVRN;ERNÞ. The set of vertices of GRN is the set of variables

of the original system. Edges of GRN are defined with respect to the

reaction network of the biological system: ðX;YÞ 2 ERN if the con-

centration of X influences the concentration of Y in some reaction,

that is, if X appears in the differential equation of Y. For instance, if

we have a one-way reaction that produces Z from X and Y, then X,

Y and Z will be vertices, and (X, Z), (Y, Z) and (X, Y) and (Y, X)

will be edges of GRN. Once we have constructed the reaction net-

work graph, we build the graph GþV over the set of vertices V made

of the selected variables fv1. . . :vkg. In GþV , we have an edge (vi, vj)

iff vj is reachable from vi in GRN. Stated differently, GþV is the

vertex-induced subgraph of the transitive closure of GRN.

3.4.2 Selecting important variables

Graph GþV reflects potential dependencies between selected vari-

ables. However, not all are useful (either because they are neglige-

able or redundant). To obtain a smaller, but still sufficiently

informative set of local dependencies between variables, we define

GMI ¼ ðV;EMIÞ by refining GþV using mutual information. Denoting

Ev the predecessors of v 2 V in GþV , and Zm
1 ; . . . ;Zm

k ;Y
m;Vmþ1 the

random variables of z1; . . . ; zk; y at time m and v at time mþ1, we

define:

MðY; VjZ1; . . . ;ZkÞ ¼ max
m2T

MIðYm; Vmþ1jZm
1 ; . . . ;Zm

k Þ

For each key variable v, we select the variables influencing v itera-

tively, as in Section 3.3. First, we select the variable, z1 2 Ev, having

the highest value for MðZ; VÞ. Then we select z2 2 Ev as the variable

having the highest MðZ; VjZ1Þ, and iterate.

4 DBN formalism

We now present the mathematical model of Dynamic Bayesian

Networks (DBNs for short), which allow us to encode the abstrac-

tion, and can be simulated in an efficient way (Liu et al., 2011b;

Palaniappan et al., 2016).

In the DBN abstraction, first, the time domain is discretized i.e.

the dynamics is assumed to be of interest only for a finite set of time

points. Each node of the DBN represents the state (concentration) of

a molecular species at a time point. Edges between nodes are defined

by an underlying graph (GRN or GMI in our case; see Fig. 2). The

value range of each variable Vi are discretized into a set of intervals

Ii. Entries in the Conditional Probability Tables (CPTs for short) are

of the form Ct
iðIjIî Þ ¼ p, saying that p is the probability of the value

of Vi falling in the interval I at time t, given that the value of Z was

in IZ at time t – 1 for each ðZ;ViÞ an edge of the underlying graph.

The size of the CPTs strongly influences performance. Indeed,

the efficiency of the DBN approach (both in terms of space complex-

ity and simulation time) scales down exponentially with the number

pa of parents of a variable. Formally, the complexity of simulating

the DBN is Oðk � jVjpaÞ, where jVj is the number of values for each

variable, and k the number of variables. In order to have CPTs with

not too many entries, we limit the number of parents to 4 per vari-

able. Increasing the number of parents does not improve the accur-

acy much while slowing down the simulations, while decreasing it

reduces the accuracy of results (Supplementary Table S1).

Our tool DBNizer automatically constructs the full DBN struc-

ture. First it generates a large number of trajectories of the underly-

ing biochemical model by numerical integration of the original

model. Second, it selects the suitable subset of variables to be used

for DBN construction and infers their edge relationships. Third, it

calculates probabilities for each entry in the CPTs through simple

counting (as in Liu et al., 2011a). It also automatically considers

model refinement through iterative improvements (see next section).

The information flow is schematically represented in Supplementary

Figure S1.

There may be additional variables, not identified in Section 3.3,

that are important for the transduction of signal. Adding these vari-

ables in the DBN can further improve its accuracy. For this, we it-

eratively find additional variables v and build an associated DBN to

assess how important they are. We rank a DBN according to the

weighted mean difference between the simulation outputs of the ori-

ginal biochemical model and the DBN. More precisely, to select an

additional variable on top of a set V of variables, we rank the DBN

MIDBNV[fvg automatically built with set of variables V [ fvg, for

every v 62 V. We select v optimizing the rank of MIDBNV[fvg. We it-

erate from V 0 ¼ V [ fvg, and stop when no additional variable

really improves the accuracy. The exact subset of variables chosen

by this iterative discovery is sensitive to parameters of our tool. This

is because several variables carry similar information. Indeed, differ-

ent choices do not impact the results much (see Supplementary

Table S5).

5 Computational results

In this section we will outline our key experimental results to com-

pare the different models according to different metrics (time per

simulation, accuracy, etc.). Unless stated otherwise, we consider

treatments with 250 ng/ml of TRAIL and simulate cell behaviors for

8 hours after treatment. The concentration of cPARP was used as an

indicator of cell death. ‘Observations’ (i.e. time points) were avail-

able every 2 min for the first 30 min, and every 15 min for the subse-

quent 7.5 hours. We used 100 000 simulations of the original HSD

model to populate the CPT entries of the DBNs. Using more simula-

tions does not improve the accuracy of the DBNs (Supplementary

Table S3). All experiments were carried on a quad core 2.8 Ghz

Intel Xeon E5�1603 CPU with 8 GB RAM.

We will consider DBNs obtained by our tool DBNizer, as

described in the next subsection. For comparison, we consider DBN

RNDBN, defined using the technique advocated in Liu et al.

(2011b), where the local dependency between nodes is chosen from

Fig. 2. A Dynamic Bayesian Network. Nodes represent discrete random vari-

ables at a time point and edges represent the local dependencies between

the nodes. Each node is also associated with a conditional probability table
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the underlying reaction network GRN. For analysis purpose, we also

consider DBN MIDBN58 with the same 58 variables as RNDBN,

but which differs by the parent relation, defined using our mutual in-

formation based procedure. DBN simulations are performed using

look-ahead simulations (Palaniappan et al., 2016).

5.1 Abstractions produced by DBNizer
Using the approach described in Section 3.3, we select variables

having maximal effect on cell fate. Setting a cut-off of 0.005 for

conditional mutual information, we obtained 6 variables, namely

by order of importance Bcl2c; XIAP; Flip; Bax, Mcl1 and Bid

(Table 1). The species that are not considered, have an initial con-

centration with almost no impact on the cell fate. In addition to

these 6 variables, we also added cPARP as it is the marker for cell

death. This set of variables is used to define and compute a mutual

information based DBN, MIDBN7.

To test the robustness of our variable selection scheme, we reiter-

ated the computations for a significantly different amount of TRAIL,

namely 10 ng/ml. The key native variables did not vary much: only

the least informative variable, Bid, is replaced by Smacm (Table 1).

Following the procedure described at the end of Section 4, the

complexes tBid � Bax, C8� Bid and activated-C3 were iteratively

added, resulting in DBNs of increasing size, MIDBN8; MIDBN9

and MIDBN10. The procedure stopped at 10 variables since adding

any other variable to MIDBN10 did not improve significantly the

discerning power of the DBN.

The variables considered by MIDBN10 are depicted in white in

Figure 1. The associated network of causalities (parent relation)

computed automatically for MIDBN10 is represented on Figure 3.

This network has several interesting features. First, one could be sur-

prised by the fact that the activated initiator Caspase8 (C8�) does

not appear. The DBN does not need the concentration of C8� expli-

citly as it can be fairly well evaluated using Flip and R�. The same

goes for Bax�, generally considered a critical player for apoptosis de-

cision, which can be fairly well evaluated using tBid � Bax; Bax and

Mcl1. The level of free Mcl1 is therefore more informative on the

cell fate than the level of Bax�. One can hypothesize that this comes

from the fact that free Mcl1 is able to efficiently sequester recently

produced active Bax, making its level a measure of the cell’s resist-

ance to apoptosis induction. More generally, the set of reactions tak-

ing place into the mitochondrion is barely represented. The direct

inhibitor XIAP of the executioner caspase C3� is in our abstrac-

tion directly influenced by tBid � Bax and Mcl1 (in addition to

R�; Fig. 3). This strongly suggests that the mitochondrion acts as a

black box with a fast (given the timescale of DBNs) and relatively

simple input/output function.

5.2 Quality and efficiency of the abstractions
In this section, we evaluate the different abstractions produced.

Ideally, behaviors predicted using the original or an abstract model

should match. However, because the original model is stochastic

(and the abstract one too), such a direct comparison is not possible.

A first, global measure of quality is given by the comparison of the

predicted percentage of cell death. The original HSD model predicts

that nearly 70% of cells die. Abstract models should predict similar

values (see Table 2, second column). Moreover, the timing of death,

that is, the distribution of death times, should be similar (see Fig. 4).

A more refined measure of abstraction quality is provided by the

discerning power. The probability that a cell dies depends on its initial

state, that is, the initial concentrations of the proteins involved in sig-

nal transduction. Indeed, it has been observed that applying TRAIL to

two sister cells just after division results in highly correlated fates

(dead or alive) of the two cells (Spencer et al., 2009). We say that a

model has a good discerning power if for many different initial condi-

tions, it is able to predict the death probability obtained with the ori-

ginal model for the same initial conditions (see Fig. 5 for an

illustration). Note that it is a more stringent criterion than the overall

death percentage. In practice, we ran 200 000 simulations of the HSD

model, and record in each case the fate of the cell (dead or alive) to-

gether with its initial configuration defined as the discrete value of the

initial concentrations of the 6 selected key proteins whose initial

Table 1. Conditional mutual information of species with respect to

death decision computed in two different conditions

TRAIL ¼ 250 ng/ml TRAIL ¼ 10 ng/ml

species MI species MI

Bcl2c 0.33 Bcl2c 0.456

XIAP 0.023 XIAP 0.014

Flip 0.023 Bax 0.008

Bax 0.021 Mcl1 0.01

Mcl1 0.025 Smacm 0.011

Bid 0.020 Flip 0.009

Note: The identified set of most important variables does not vary much in

the two conditions.

Fig. 3. Inferred connectivity network for MIDBN10 (self connections not repre-

sented). The nodes of the DBN are Flip; Bid; Bcl2c; tBid � Bax ; Bax ;

Mcl1; C3� PARP , XIAP ; cPARP and activated form of R. Selected variables cor-

respond either to the upper part of the pathway or to its lower part, with only one

representative of mitochondrial processes (Mcl1)

Table 2. Quality and efficiency of the abstractions

Model Cell death

(HSD: 69.9%)

Discerning power

(HSD: 100%)

Time/1000 simulations

(HSD: 56s)

MIDBN7 70.43% 96.14% 2:13s (26:3X)

MIDBN8 69.57% 96.31% 2.64s (21.21X)

MIDBN9 69.33% 96.37% 2.98s (18.8X)

MIDBN10 69.03% 96.84% 3.30s (17X)

MIDBN58 66.85% 94.12% 73.05s

RNDBN 92.29% 85.53% 299s

Note: All mutual information based DBNs show good results for quality as

measured by percentage of cell death and discerning power (see text for their

definition), with MIDBN10 providing the best results. All compact DBNs

show good performance as measured by simulation time with at least a ten

times speedup with respect to the reference HSD model.
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configurations have an impact on the cell fate. For instance, the con-

figuration XIAP : low, Bid : high; Bcl2c : verylow; Bax : high, Mcl1

: low; Flip : verylow (configuration 120210) was highly represented

(2628 samples) and highly associated to cell death (99% probability),

whereas the configuration XIAP : high; Bid : low; Bcl2c : veryhigh;

Bax : low; Mcl1 : high; Flip : verylow (configuration 213 120; 809

samples) leads to cell death in only 9% of the simulations. For each

initial configuration, we compute the difference between the predic-

tions by the HSD model and the DBN abstraction weighted by the

percentage of occurrence of this profile in the HSD simulations. For

statistical reasons, we focused on the 60 most frequent configurations

that together represent 50% of the 200 000 simulations. Any single

such configuration is represented in at least 700 simulations. The dis-

cerning power is then defined as 100% minus this weighted error (see

Table 2, second column).

Regarding the efficiency of the simulation, we assess the time

needed to run 1000 simulations of the original HSD model and of

its various abstractions, MIDBN7; MIDBN8; MIDBN9, MIDBN10,

and for reference MIDBN58 and RNDBN. All these information are

provided in Table 2 (last column).

As represented in Figure 4, Supplementary Figure S2, and

summarized in Table 2 (first column), all DBNs using mutual

information provide good to very good descriptions of the dynamics

of cell death. This is in sharp contrast to the reaction network based

DBN, RNDBN. The comparison of RNDBN and MIDBN58

(Supplementary Fig. S2), having both 58 nodes, clearly shows that

the critical feature is to have a proper parent relation. As expected,

the comparison of DBNs with 7–10 variables (Table 2 and

Supplementary Fig. S2) shows that adding more variables improves

accuracy. However, the performance of MIDBN58 is slightly worse

than that of MIDBN7, indicating that in probabilistic representa-

tions there might be a trade off between the capacity to store infor-

mation (favoring large DBNs) and to reuse it (favoring small ones).

Similar results are found for the discerning power (Table 2

(second column)). All MI based DBNs have a > 94% discerning

power, in sharp contrast to RNDBN (< 86%). To better analyze

the low performance of RNDBN, we represent the predicted per-

centage of cell death in different initial configurations (Fig. 5). We

observe that irrespective of the initial configuration, RNDBN pre-

dicts a constant high death rate (> 80%): Influences between vari-

ables are not well captured by RNDBN for this challenging

dynamical system (high dimension, strong non-linearities).

The analysis of simulation times (Table 2, last column) shows

that the performance of abstraction depends strongly on their size.

Large DBNs, RNDBN and MIDBN58, are actually slower to simu-

late than (an optimized implementation of) the original HSD model.

All compact DBNs however show good performance, being at least

17 times faster than the HSD model (for MIDBN10) and up to 26

times faster (for MIDBN7). Experiments run for treatment with 10

ng/ml TRAIL display very similar results (see Supplementary Figs S7

and S8).

In summary, using MI based DBNs is essential to obtain abstrac-

tions of good quality; and using low-dimensional DBNs is essential

to obtain efficient abstractions. MIDBN7 to MIDBN10 present both

advantages, with slightly different trade-offs.

5.3 Importance of MI-based abstractions
In the previous section, we found that the approach used to define

local dependencies between variables has a critical impact on the ab-

straction quality. To better understand why this choice is so import-

ant, we focus in this section on how the parent relation is

represented in RNDBN and in MIDBN58 for one particular com-

plex, namely M� � Smacm.

An excerpt of the network is represented in more detail in

Figure 6. Because of the reaction forming M� � Smacm, the parents

of M� � Smacm in RNDBN are M�; Smacm and M� � Smacm. In

Fig. 5. Dead cell percentage for various initial configurations as predicted by HSD, MIDBN10 and RNDBN. As expected, death probability is maximal when pro-

apoptotic proteins Bid and Bax are high and anti-apoptotic proteins, XIAP ; Bcl2c; Mcl1 and Flip, are low (e.g. 100% in initial configuration 120210). The converse

holds as well (e.g. 15% in initial configuration 212120) MIDBN10 accurately follows the dynamics of the original model, in accordance with its good discerning

power. In contrast the cell death percentage for RNDBN does not vary much over all initial configurations. Results for all DBNs are provided in Supplementary

Figure S3

Fig. 4. Distribution of the time of death during a TRAIL treatment as predicted

by the reference HSD model and two abstractions, RNDBN and MIDBN10. The

death distribution of MIDBN10 very closely follows that of the HSD model

with only a marginal error at the peak value. RNDBN on the other hand

significantly overestimates the number of cell death during the period

100–200 min and slightly underestimates it later on. Results for all DBNs are

provided in Supplementary Figure S2
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MIDBN58; Bax�, Bax2� and Bax4� �M have been chosen as par-

ents by our MI-based approach, in addition to M� � Smacm itself

(depicted in white in Fig. 6). We verified that these parents allow to

predict the level of M� � Smacm (15 min later) better than

M�; Smacm and M� � Smacm (see Supplementary Fig. S5).

We conjecture that the speed of reactions from Bax4� to M� � S

macm is faster than the timestep of the DBN, while Bax� and Bax2�

have a more gradual evolution. This seems confirmed considering a

trajectory of the system, as depicted in Figure 7. Because of causal-

ity, one would expect that a significant increase of reactants in a re-

action would cause a significant increase of the products. After

discretization, this should typically lead to two successive threshold

crossing events, reactants being followed by products. However, if

reactions are fast it may often be the case that the two threshold

crossings happen during the same time interval and therefore appear

simultaneously after time discretization, thereby loosing causality

and mutual dependence between the current values of parents and

the future value of the variable to predict. This can be observed in

Figure 7 where both M� and M� � Smacm cross their threshold dur-

ing the interval 150–165 min. Defining parent relations based on the

reaction network might therefore not be appropriate for systems

showing fast and slow dynamics (referred to as ‘snap-action’ in

Albeck et al., 2008) as is the case for apoptosis.

6 Conclusions and perspectives

In this paper we have discussed how we can abstract the dynamics

of a biological pathway into a discrete-time stochastic model,

namely a DBN, using information theory measures. Specifically,

we proposed a new strategy to automatically infer the structure of

small DBNs and demonstrate their accuracy and efficiency. On the

first aspect, our abstractions are able to represent the fraction of

dead cells and the distribution of death times as described by the

original HSD model (the mismatch is of the order of 1%). On the se-

cond aspect, the DBN abstractions enjoy an order of magnitude

faster simulations in comparison with the original model. Besides

pure simulation, the inferred structure is also informative regarding

effective dependencies between variables and could typically be

of use when selecting variables for experimental measurements.

Lastly, our abstraction procedure is general, provided that a suffi-

cient diversity of input profiles and initial conditions have been used

to train the DBNs. We are working on a multi-scale model where

cells affect their environment in a physical way exclusively (altering

diffusion).
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Fig. 6. Excerpt of the apoptosis reaction network focusing on the complex

M� � Smacm and mitochondrial reactions. For the structure-based RNDBN, parents

of M� � Smacm are M� � Smacm; Smacm and M�. For the MI-based MIDBN58,

parents are M� � Smacm; Bax�; Bax2� and Bax4� �M, depicted in yellow

Fig. 7. Temporal evolution of the concentration (top) and its discretized value

(bottom) for selected variables of one simulation of the apoptosis pathway.

During the time interval 150-165, Bax4� �M; M� and Smacm �M� go simul-

taneously from level 1 to level 2. Using these fast evolving variables is not as

informative as using variables Bax �;Bax2� evolving more slowly
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