Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Developmental biology

Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Developmental biology - 15 Oct 2001

Herbomel P, Thisse B, Thisse C

Link to Pubmed [PMID] – 11784010

Dev. Biol. 2001 Oct;238(2):274-88

The origin of resident (noninflammatory) macrophages in vertebrate tissues is still poorly understood. In the zebrafish embryo, we recently described a specific lineage of early macrophages that differentiate in the yolk sac before the onset of blood circulation. We now show that these early macrophages spread in the whole cephalic mesenchyme, and from there invade epithelial tissues: epidermis, retina, and brain–especially the optic tectum. In the panther mutant, which lacks a functional fms (M-CSF receptor) gene, early macrophages differentiate and behave apparently normally in the yolk sac, but then fail to invade embryonic tissues. Our video recordings then document for the first time the behavior of macrophages in the invaded tissues, revealing the striking propensity of early macrophages in epidermis and brain to wander restlessly among epithelial cells. This unexpected behavior suggests that tissue macrophages may be constantly “patrolling” for immune and possibly also developmental and trophic surveillance. At 60 h post-fertilization, all macrophages in the brain and retina undergo a specific phenotypic transformation, into “early (amoeboid) microglia”: they become more highly endocytic, they down-regulate the L-plastin gene, and abruptly start expressing high levels of apolipoprotein E, a well-known neurotrophic lipid carrier.

http://www.ncbi.nlm.nih.gov/pubmed/11784010