Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

Why are there so many diverse replication machineries?

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 26 Sep 2013

Forterre P

Link to Pubmed [PMID] – 24075868

J. Mol. Biol. 2013 Nov;425(23):4714-26

The replicon model has initiated a major research line in molecular biology: the study of DNA replication mechanisms. Until now, the majority of studies have focused on a limited set of model organisms, mainly from Bacteria or Opisthokont eukaryotes (human, yeasts) and a few viral systems. However, molecular evolutionists have shown that the living world is more complex and diverse than believed when the operon model was proposed. Comparison of DNA replication proteins in the three domains, Archaea, Bacteria, and Eukarya, have surprisingly revealed the existence of two distinct sets of non-homologous cellular DNA replication proteins, one in Bacteria and the other in Archaea and Eukarya, suggesting that the last universal common ancestor possibly still had an RNA genome. A major puzzle is the presence in eukaryotes of the unfaithful DNA polymerase alpha (Pol α) to prime Okazaki fragments. Interestingly, Pol α is specifically involved in telomere biosynthesis, and its absence in Archaea correlates with the absence of telomeres. The recent discovery of telomere-like GC quartets in eukaryotic replication origins suggests a link between Pol α and the overall organization of the eukaryotic chromosome. As previously proposed by Takemura, Pol α might have originated from a mobile element of viral origin that played a critical role in the emergence of the complex eukaryotic genomes. Notably, most large DNA viruses encode DNA replication proteins very divergent from their cellular counterparts. The diversity of viral replication machineries compared to cellular ones suggests that DNA and DNA replication mechanisms first originated and diversified in the ancient virosphere, possibly explaining why they are so many different types of replication machinerie.