Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 19 Jan 2007

Vitrenko YA, Gracheva EO, Richmond JE, Liebman SW,

Link to Pubmed [PMID] – 17121829

J Biol Chem 2007 Jan; 282(3): 1779-87

Factors triggering the de novo appearance of prions are still poorly understood. In yeast, the appearance of one prion, [PSI(+)], is enhanced by the presence of another prion, [PIN(+)]. The [PSI(+)] and [PIN(+)] prion-forming proteins are, respectively, the translational termination factor Sup35 and the yet poorly characterized Rnq1 protein that is rich in glutamines and asparagines. The prion domain of Rnq1 (RnqPD) polymerizes more readily in vitro than the full-length protein. As is typical for amyloidogenic proteins, the reaction begins with a lag phase, followed by exponential growth. Seeding with pre-formed aggregates significantly shortens the lag. A generic antibody against pre-amyloid oligomer inhibits the unseeded but not the self-seeded reaction. As revealed by electron microscopy, RnqPD polymerizes predominantly into spherical species that eventually agglomerate. We observed infrequent fiber-like structures in samples taken at 4 h of polymerization, but in overnight samples SDS treatment was required to reveal fibers among agglomerates. Polymerization reactions in which RnqPD and the prion domain of Sup35 (Sup35NM) cross-seed each other proceeded with a shortened lag that only depends weakly on the protein concentration. Cross-seeded Sup35NM fibers appear to sprout from globular RnqPD aggregates as seen by electron microscopy. RnqPD spherical aggregates appear to associate with and, later occlude, Sup35NM seed fibers. Our kinetic and morphological analyses suggest that, upon cross-seeding, the aggregate provides the surface on which oligomers of the heterologous protein nucleate their subsequent amyloid formation.