Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases

Transmission bottlenecks and the evolution of fitness in rapidly evolving RNA viruses

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases - 01 Jul 2001

Elena SF, Sanjuán R, Bordería AV, Turner PE

Link to Pubmed [PMID] – 12798049

Infect. Genet. Evol. 2001 Jul;1(1):41-8

We explored the evolutionary importance of two factors in the adaptation of RNA viruses to their cellular hosts, size of viral inoculum used to initiate a new infection, and mode of transmission (horizontal versus vertical). Transmission bottlenecks should occur in natural populations of viruses and their profound effects on viral adaptation have been previously documented. However, the role of transmission mode has not received the same attention. Here we used a factorial experimental design to test the combined effects of inoculum (bottleneck) size and mode of transmission in evolution of vesicular stomatitis virus (VSV) in tissue culture, and compared our results to the predictions of a recent theoretical model. Our data were in accord with basic genetic principles concerning the balance between mutation, selection and genetic drift. In particular, attenuation of vertically transmitted viruses was a consequence of the random accumulation of deleterious mutations, whereas horizontally transmitted viruses experiencing similar bottlenecks did not suffer the same fitness losses because effective bottleneck size was actually determined by the number of host individuals. In addition, high levels of viral fitness in horizontally transmitted populations were explained by competition among viral variants.

http://www.ncbi.nlm.nih.gov/pubmed/12798049