Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Organic & Biomolecular Chemistry

Tight-binding inhibition of jack bean α-mannosidase by glycoimidazole clusters

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Organic & Biomolecular Chemistry - 21 May 2019

M. M. Pichon, F. Stauffert, A. Bodlenner, P. Compain

Link to DOI – 10.1039/C9OB00826H

Org. Biomol. Chem., 2019, 17, 5801-5817

The best multivalent effects observed in glycosidase inhibition have been achieved so far with jack bean α-mannosidase (JBα-man) using iminosugar clusters based on weakly binding mismatching active-site-directed inhibiting epitopes (inhitopes) in the Dgluco series. Here, we synthesize and evaluate as JBα-man inhibitors a series of mono- to 14-valent glycoimidazoles with inhitopes displaying inhibition values up to the range of hundreds of nMs to study the impact of inhitope affinity on the multivalent effect. The most potent inhibitor of the series, a 14-valent mannoimidazole derivative, inhibits JBα-man with a nanomolar Ki value (2 ± 0.5 nM) and binding enhancements observed are, at best, relatively small (up to 25-fold on a valency-corrected basis). The results of this study support the fact that JBα-man-inhitope affinity and the strength of the inhibitory multivalent effect evolve in the opposite direction. The major impact of the glycoimidazole-based inhitope is found on the binding scenario; most of the synthesized mannoimidazole clusters as well as a 14-valent glucoimidazole derivative prove to be tight binding inhibitors of JBα-man.