Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Science advances

The recombination efficiency of the bacterial integron depends on the mechanical stability of the synaptic complex.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Science advances - 13 Dec 2024

Vorobevskaia E, Loot C, Mazel D, Schlierf M

Link to Pubmed [PMID] – 39671485

Link to DOI – 10.1126/sciadv.adp8756

Sci Adv 2024 Dec; 10(50): eadp8756

Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the attC sites. Four recombinases and two attC sites form the synaptic complex. Yet, for unclear reasons, the recombination efficiency varies greatly. Here, we established an optical tweezers force spectroscopy assay to probe the synaptic complex stability and revealed, for seven combinations of attC sites, significant variability in the mechanical stability. We found a strong correlation between mechanical stability and recombination efficiency of attC sites in vivo, indicating a regulatory mechanism from the DNA structure to the macromolecular complex stability. Taking into account known forces during DNA metabolism, we propose that the variation of the integron in vivo recombination efficiency is mediated by the synaptic complex stability. We anticipate that further recombination processes are also affected by their corresponding mechanical stability.