Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cellular microbiology

The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cellular microbiology - 17 Aug 2007

Santi-Rocca J, Weber C, Guigon G, Sismeiro O, Coppée JY, Guillén N

Link to Pubmed [PMID] – 17711481

Cell. Microbiol. 2008 Jan;10(1):202-17

The parasite Entamoeba histolytica colonizes the large bowel where it may persist as an asymptomatic luminal gut infection, which changes to virulence. Parasite invasion of the intestine leads to dysentery and spreads to the liver, where amoebae form abscesses. We took advantage of changes in virulence that occurs after long-term in vitro culture of E. histolytica strains. Using microarrays, we concluded that virulence correlates with upregulation of key genes involved in stress response, including molecular chaperones, ssp1 and peroxiredoxin; as well as the induction of unknown genes encoding lysine-rich proteins. Seven of these were retained with respect to their lysine content higher than 25%. Among them, we found KERP1, formerly identified as associated to parasite surface and involved in the parasite adherence to host cells. Experimentally induced liver abscesses, using molecular beacons and protein analysis, allowed us to draw a parallel between the intricate upregulation of kerp1 gene expression during abscess development and the increased abundance of KERP1 in virulent trophozoites. Following its characterization as a marker for the progression of infection, KERP1 was also seen to be a virulence marker as trophozoites affected in kerp1 expression by an antisense strategy were unable to form liver abscesses.