Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Timothy Wai
Publication : The Journal of cell biology

The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of cell biology - 10 Mar 2014

Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T

Link to Pubmed [PMID] – 24616225

J. Cell Biol. 2014 Mar;204(6):919-29

Mitochondrial fusion and structure depend on the dynamin-like GTPase OPA1, whose activity is regulated by proteolytic processing. Constitutive OPA1 cleavage by YME1L and OMA1 at two distinct sites leads to the accumulation of both long and short forms of OPA1 and maintains mitochondrial fusion. Stress-induced OPA1 processing by OMA1 converts OPA1 completely into short isoforms, inhibits fusion, and triggers mitochondrial fragmentation. Here, we have analyzed the function of different OPA1 forms in cells lacking YME1L, OMA1, or both. Unexpectedly, deletion of Oma1 restored mitochondrial tubulation, cristae morphogenesis, and apoptotic resistance in cells lacking YME1L. Long OPA1 forms were sufficient to mediate mitochondrial fusion in these cells. Expression of short OPA1 forms promoted mitochondrial fragmentation, which indicates that they are associated with fission. Consistently, GTPase-inactive, short OPA1 forms partially colocalize with ER-mitochondria contact sites and the mitochondrial fission machinery. Thus, OPA1 processing is dispensable for fusion but coordinates the dynamic behavior of mitochondria and is crucial for mitochondrial integrity and quality control.