Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Mélanie Falord, Tarek Msadek, Jean-Marc Panaud
Staphylococcus aureus "golden staph" in scanning electron microscopy.
Publication : mBio

The hypervariable region of meningococcal major pilin PilE controls the host cell response via antigenic variation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in mBio - 11 Feb 2014

Miller F, Phan G, Brissac T, Bouchiat C, Lioux G, Nassif X, Coureuil M

Link to Pubmed [PMID] – 24520062

MBio 2014 Feb;5(1):e01024-13

UNLABELLED: Type IV pili (Tfp) are expressed by many Gram-negative bacteria to promote aggregation, adhesion, internalization, twitching motility, or natural transformation. Tfp of Neisseria meningitidis, the causative agent of cerebrospinal meningitis, are involved in the colonization of human nasopharynx. After invasion of the bloodstream, Tfp allow adhesion of N. meningitidis to human endothelial cells, which leads to the opening of the blood-brain barrier and meningitis. To achieve firm adhesion, N. meningitidis induces a host cell response that results in elongation of microvilli surrounding the meningococcal colony. Here we study the role of the major pilin subunit PilE during host cell response using human dermal microvascular endothelial cells and the pharynx carcinoma-derived FaDu epithelial cell line. We first show that some PilE variants are unable to induce a host cell response. By engineering PilE mutants, we observed that the PilE C-terminus domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and that hypervariable regions confer different host cell specificities. Moreover, the study of point mutants of the pilin D-region combined with structural modeling of PilE revealed that the D-region contains two independent regions involved in signaling to human dermal microvascular endothelial cells (HDMECs) or FaDu cells. Our results indicate that the diversity of the PilE D-region sequence allows the induction of the host cell response via several receptors. This suggests that Neisseria meningitidis has evolved a powerful tool to adapt easily to many niches by modifying its ability to interact with host cells.

IMPORTANCE: Type IV pili (Tfp) are long appendages expressed by many Gram-negative bacteria, including Neisseria meningitidis, the causative agent of cerebrospinal meningitis. These pili are involved in many aspects of pathogenesis: natural competence, aggregation, adhesion, and twitching motility. More specifically, Neisseria meningitidis, which is devoid of a secretion system to manipulate its host, has evolved its Tfp to signal to brain endothelial cells and open the blood-brain barrier. In this report, we investigate, at the molecular level, the involvement of the major pilin subunit PilE in host cell response. Our results indicate that the PilE C-terminal domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and contains two independent regions involved in host cell signaling.

https://www.ncbi.nlm.nih.gov/pubmed/24520062