Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Pierre Gounon
Entrée de Listeria dans une cellule épithéliale (Grossissement X 10000). Image colorisée.
Publication : Molecular microbiology

The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Mar 2001

Milohanic E, Jonquières R, Cossart P, Berche P, Gaillard JL

Link to Pubmed [PMID] – 11251838

Mol. Microbiol. 2001 Mar;39(5):1212-24

Adherence of pathogenic microorganisms to the cell surface is a key event during infection. We have previously reported the characterization of Listeria monocytogenes transposon mutants defective in adhesion to eukaryotic cells. One of these mutants had lost the ability to produce Ami, a 102 kDa autolytic amidase with an N-terminal catalytic domain and a C-terminal cell wall-anchoring domain made up of repeated modules containing the dipeptide GW (‘GW modules’). We generated ami null mutations by plasmid insertion into L. monocytogenes strains lacking the invasion proteins InlA (EGDDeltainlA), InlB (EGDDeltainlB) or both (EGDDeltainlAB). These mutants were 5-10 times less adherent than their parental strains in various cell types. The adhesion capacity of the mutants was restored by complementation with a DNA fragment encoding the Ami cell wall-anchoring domain fused to the Ami signal peptide. The cell-binding activity of the Ami cell wall-anchoring domain was further demonstrated using the purified polypeptide. Growth of the ami null mutants constructed in EGD and EGDDeltainlAB backgrounds was attenuated in the livers of mice inoculated intravenously, indicating a role for Ami in L. monocytogenes virulence. Adhesive properties have recently been reported in the non-catalytic domain of two other autolysins, Staphylococcus epidermidis AtlE and Staphylococcus saprophyticus Aas. Interestingly, we found that these domains were also composed of repeated GW modules. Thus, certain autolysins appear to promote bacterial attachment by means of their GW repeat domains. These molecules may contribute to the colonization of host tissues by Gram-positive bacteria.

http://www.ncbi.nlm.nih.gov/pubmed/11251838