Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 21 Dec 2005

Kajaste-Rudnitski A, Mashimo T, Frenkiel MP, Guénet JL, Lucas M, Desprès P

Link to Pubmed [PMID] – 16371364

J. Biol. Chem. 2006 Feb;281(8):4624-37

The 2′,5′-oligoadenylate synthetase (OAS) proteins associated with endoribonuclease RNase L are components of the interferon-regulated OAS/RNase L system, which is an RNA decay pathway known to play an important role in the innate antiviral immunity. A large body of evidence suggests a critical role for the 1b isoform of the mouse Oas gene (Oas1b) in resistance to West Nile virus (WNV) infection in vivo. WNV is a positive, single-stranded RNA virus responsible for severe encephalitis in a large range of animal species and humans. To investigate the molecular basis for the sensitivity of WNV to the Oas1b antiviral pathway, we established a stable mouse fibroblastic cell clone that up-regulates Oas1b protein expression under the control of the Tet-Off expression system. We showed that murine cells respond to Oas1b expression by efficiently inhibiting WNV replication. The antiviral action of Oas1b was essentially restricted to the early stages in virus life cycle. We found that the inability of WNV to productively infect the Oas1b-expressing cells was attributable to a dramatic reduction in positive-stranded viral RNA level. Thus, Oas1b represents an antiviral pathway that exerts its inhibitory effect on WNV replication by preventing viral RNA accumulation inside infected cells.

http://www.ncbi.nlm.nih.gov/pubmed/16371364