Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of environmental monitoring : JEM

Synergistic effects of metal nanoparticles and a phenolic uncoupler using microdroplet-based two-dimensional approach

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of environmental monitoring : JEM - 13 Dec 2010

Funfak A, Cao J, Knauer A, Martin K, Köhler JM

Link to Pubmed [PMID] – 21152601

J Environ Monit 2011 Feb;13(2):410-5

A droplet-based microfluidic technique for testing multiple reagent concentrations is presented. We used this experimental approach to study combined effects of gold (AuNP) and silver nanoparticles (AgNP) with the phenolic uncoupler 2,4-dinitrophenol (DNP) with respect to the growth of Escherichia coli. In order to evaluate the toxicity of binary mixtures, we first encapsulated the E. coli cells and particle mixtures inside the microdroplets using PEEK (polyetherketone) modules. Two-dimensional concentration spaces with about 500 well separated droplets were addressed. We subsequently analyzed the cell growth, the viability and the autofluorescence intensity (metabolic activity) of the bacteria with a micro-flow-through fluorometer and photometer. Dose-dependent synergistic effects were found for the binary mixture of AgNPs and DNP, which indicated a stronger interaction in the mixture than it was expected from effect summation. For the binary mixture of DNP and AuNPs in non-toxic concentrations, we found only weak synergistic effects at low DNP concentrations. Furthermore, the non-toxic tested AuNPs causes effect summation in the binary mixture with the phenolic uncoupler. In general, we demonstrated the efficiency of a droplet-based microfluidic system for fast high-throughput screenings of binary and multiple mixtures. This work also confirmed the relevance of highly resolved droplet-based assays for the miniaturization of ecotoxicological aquatic test systems.

https://www.ncbi.nlm.nih.gov/pubmed/21152601