Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : FEMS yeast research

Structure of Kluyveromyces lactis subtelomeres: duplications and gene content

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FEMS yeast research - 01 May 2006

Fairhead C, Dujon B

Link to Pubmed [PMID] – 16630283

FEMS Yeast Res. 2006 May;6(3):428-41

We have constructed a map of the duplicated regions of Kluyveromyces lactis subtelomeres. Seven out of 12 subtelomeres contain an almost identical 9 kb long segment starting from the end. This segment is bordered by a long terminal repeat element. Two of the subtelomeres share sequence similarity that extends over a total of 20 kb. The other subtelomeres also contain duplicated regions of 1-6 kb. Nonduplicated regions contain unique genes and genes from paralog families. All duplicated segments are in the same orientation with respect to the telomere, probably as a result of genetic exchange. We map the only two copies of retrotransposons in the genome, in subtelomeres. Low-complexity gene sequences that encode threonine- and serine-rich peptides are associated with the subtelomeres of K. lactis, as in Saccharomyces cerevisiae. The ubiquity of these sequences in hemiascomycete genomes, and the propensity they have to encode proteins with extracellular localization, make these genes ideal candidates for fast evolving ‘contingency’ genes involved in the adaptation of a species to its environment.