Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Experimental cell research

Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Experimental cell research - 15 Mar 2000

Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE

Link to Pubmed [PMID] – 10694430

Exp. Cell Res. 2000 Mar;255(2):135-43

The basic helix-loop-helix/leucine zipper (bHLH/ZIP) microphthalmia-associated transcription factor (MITF) regulates transcription of genes encoding enzymes essential for melanin biosynthesis in melanocytes and retinal pigmented epithelial cells. To determine how MITF activity is regulated, we used the yeast two-hybrid system to identify proteins expressed by human melanoma cells that interact with MITF. The majority of clones that showed positive interaction with a 158-amino-acid region of MITF containing the bHLH/ZIP domain (aa 168-325) encoded the ubiquitin conjugating enzyme hUBC9. The association of MITF with hUBC9 was further confirmed by an in vitro GST pull-down assay. Although hUBC9 is known to interact preferentially with SENTRIN/SUMO1, in vitro transcription/translation analysis demonstrated greater association of MITF with ubiquitin than with SENTRIN. Importantly, cotransfection of MITF and hUBC9 expression vectors resulted in MITF protein degradation. MITF protein was stabilized by the proteasome inhibitor MG132, indicating the role of the ubiquitin-proteasome system in MITF degradation. Serine 73, which is located in a region rich in proline, glutamic acid, serine, and threonine (PEST), regulates MITF protein stability, since a serine to alanine mutation prevented hUBC9-mediated MITF (S73A) degradation. Furthermore, we identified lysine 201 as a potential ubiquitination site. A lysine to arginine mutation abolished MITF (K201R) degradation by hUBC9 in vivo. Our experiments indicate that by targeting MITF for proteasome degradation, hUBC9 is a critical regulator of melanocyte differentiation.

http://www.ncbi.nlm.nih.gov/pubmed/10694430