Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

Rapid and widespread de novo evolution of kin discrimination

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 06 Jul 2015

Rendueles O, Zee PC, Dinkelacker I, Amherd M, Wielgoss S, Velicer GJ

Link to Pubmed [PMID] – 26150498

Proc. Natl. Acad. Sci. U.S.A. 2015 Jul;112(29):9076-81

Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter. Here, we first use natural isolates of the highly social bacterium Myxococcus xanthus to show that colony-merger incompatibilities can be strong barriers to social interaction, particularly by reducing chimerism in multicellular fruiting bodies that develop near colony-territory borders. We then use experimental laboratory populations to test hypotheses regarding the evolutionary origins of kin discrimination. We show that the generic process of adaptation, irrespective of selective environment, is sufficient to repeatedly generate kin-discriminatory behaviors between evolved populations and their common ancestor. Further, we find that kin discrimination pervasively evolves indirectly between allopatric replicate populations that adapt to the same ecological habitat and that this occurs generically in many distinct habitats. Patterns of interpopulation discrimination imply that kin discrimination phenotypes evolved via many diverse genetic mechanisms and mutation-accumulation patterns support this inference. Strong incompatibility phenotypes emerged abruptly in some populations but strengthened gradually in others. The indirect evolution of kin discrimination in an asexual microbe is analogous to the indirect evolution of reproductive incompatibility in sexual eukaryotes and linguistic incompatibility among human cultures, the commonality being indirect, noncoordinated divergence of complex systems evolving in isolation.

http://www.ncbi.nlm.nih.gov/pubmed/26150498