Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Thomas Wollert
Publication : Molecular and cellular probes

Quantitative evaluation of PpSP15-LmSTI1 fusion gene expression following transfection with an alphavirus-derived self-amplifying mRNA and conventional DNA vaccine platforms.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular and cellular probes - 01 Oct 2021

Savar NS, Vallet T, Azizi M, Arashkia A, Lundstrom K, Vignuzzi M, Niknam HM,

Link to Pubmed [PMID] – 34214632

Link to DOI – 10.1016/j.mcp.2021.101749S0890-8508(21)00056-6

Mol Cell Probes 2021 Oct; 59(): 101749

New vaccine platforms are crucial to address complex parasitic infections such as cutaneous leishmaniasis. Self-amplifying mRNA (SAM) based vaccines represent the next generation nucleic acid-based platform. In the present study, we compared the expression levels of PpSP15-LmSTI1 fusion gene in BHK-21 cells following transfection with Semliki Forest virus (SFV)-derived SAM, SFV-derived plasmid DNA (pSFV-PD) and conventional plasmid DNA (pcDNA3.1+). PpSP15-LmSTI1 fusion gene expression levels were evaluated at different time points, using quantitative Real-time PCR. All data were validated and normalized by two internal control genes. According to the results, mean values of relative expression were significantly higher for SFV-PD SAM/fusion than pcDNA/fusion and pSFV-PD/fusion at all concentrations and time points. Our results showed that higher levels of PpSp15-LmSTI1 antigen expression could be achieved using a SAM vector than pcDNA and pSFV-PD, making it a valuable and efficient alternative to conventional plasmid DNA-based vaccines against leishmaniasis.

https://pubmed.ncbi.nlm.nih.gov/34214632