Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 04 Sep 2014

Lepousez G, Nissant A, Bryant AK, Gheusi G, Greer CA, Lledo PM

Link to Pubmed [PMID] – 25189772

Proc. Natl. Acad. Sci. U.S.A. 2014 Sep;111(38):13984-9

The production of new neurons in the olfactory bulb (OB) through adulthood is a major mechanism of structural and functional plasticity underlying learning-induced circuit remodeling. The recruitment of adult-born OB neurons depends not only on sensory input but also on the context in which the olfactory stimulus is received. Among the multiple steps of adult neurogenesis, the integration and survival of adult-born neurons are both strongly influenced by olfactory learning. Conversely, optogenetic stimulation of adult-born neurons has been shown to specifically improve olfactory learning and long-term memory. However, the nature of the circuit and the synaptic mechanisms underlying this reciprocal influence are not yet known. Here, we showed that olfactory learning increases the spine density in a region-restricted manner along the dendritic tree of adult-born granule cells (GCs). Anatomical and electrophysiological analysis of adult-born GCs showed that olfactory learning promotes a remodeling of both excitatory and inhibitory inputs selectively in the deep dendritic domain. Circuit mapping revealed that the malleable dendritic portion of adult-born neurons receives excitatory inputs mostly from the regions of the olfactory cortex that project back to the OB. Finally, selective optogenetic stimulation of olfactory cortical projections to the OB showed that learning strengthens these inputs onto adult-born GCs. We conclude that learning promotes input-specific synaptic plasticity in adult-born neurons, which reinforces the top-down influence from the olfactory cortex to early stages of olfactory information processing.