Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of neuroscience : the official journal of the Society for Neuroscience

Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of neuroscience : the official journal of the Society for Neuroscience - 11 Oct 2006

Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM

Link to Pubmed [PMID] – 17035535

J Neurosci 2006 Oct; 26(41): 10508-13

In the olfactory bulb (OB), new neurons are added throughout life, forming an integral part of the functioning circuit. Yet only some of them survive more than a month. To determine whether this turnover depends on olfactory learning, we examined the survival of adult newborn cells labeled with the cell division marker BrdU, administered before learning in an olfactory discrimination task. We report that discrimination learning increases the number of newborn neurons in the adult OB by prolonging their survival. Simple exposure to the pair of olfactory cues did not alter neurogenesis, indicating that the mere activation of sensory inputs during the learning task was insufficient to alter neurogenesis. The increase in cell survival after learning was not uniformly distributed throughout angular sectors of coronal sections of the OB. Monitoring odor activation maps using patterns of Zif268 immediate early gene expression revealed that survival was greater in regions more activated by the non-reinforced odorant. We conclude that sensory activation in a learning context not only controls the total number of newborn neurons in the adult OB, but also refines their precise location. Shaping the distribution of newborn neurons by influencing their survival could optimize the olfactory information processing required for odor discrimination.