Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Shalin E. Abraham, Michael Häusser, Christoph Schmidt-Hieber, University College London
The dentate gyrus is one of the few mammalian brain regions where new neurons are generated throughout life. The image was taken with a confocal microscope from a parasagittal slice of the mouse hippocampus. Cells were labelled with fluorescent markers: Newly generated neurons are red (doublecortin), mature neurons are green (NeuN), and nuclei are blue (DAPI)
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in bioRxiv - 05 Jul 2021

Zhang CL, Koukouli F, Allegra M, Ortiz C, Kao HL, Maskos U, Changeux JP, Schmidt-Hieber C

Link to DOI – 10.1101/2021.07.05.451151

bioRxiv 10.1101/2021.07.05.451151

Preparatory activity in the frontal cortex preceding movement onset is thought to represent a neuronal signature of motor planning. However, how excitatory and inhibitory synaptic inputs to frontal neurons are integrated during movement preparation remains unclear. Here we address this question by performing in vivo whole-cell patch-clamp recordings in the secondary motor cortex (MOs) of head-fixed mice moving on a treadmill. We find that both superficial and deep principal neurons show slowly increasing (~10 s) membrane potential and spike rate ramps preceding the onset of spontaneous, self-paced running periods. By contrast, in animals trained to perform a goal-directed task, both membrane potential and spike ramps are characterized by larger amplitudes and accelerated kinetics during preparation of goal-driven movement. To determine the role of local inhibitory neurons in shaping these task-dependent preparatory signals, we chemogenetically suppressed the activity of specific interneuron subpopulations in untrained animals. Inactivation of parvalbumin-positive (PV+) interneurons leads to depolarized membrane potential ramps with increased amplitudes during preparation of movement, while inactivation of somatostatin-positive (SOM+) interneurons abolishes membrane potential ramps. A computational model of the local MOs circuit shows that SOM+-mediated inhibition of PV+ interneurons in conjunction with recurrent connectivity among the principal neurons can reproduce slow ramping signals, while plasticity of excitatory synapses on SOM+ interneurons can explain the acceleration of these signals in trained animals. Together, our data reveal that local inhibitory neurons play distinct roles in controlling task-dependent preparatory ramping signals when MOs neurons integrate external inputs during motor planning.

https://www.biorxiv.org/content/10.1101/2021.07.05.451151v1