Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© K. Melican.
Human microvessel (red) colonized by N. meningitidis (green).
Publication : Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

Inflammatory Osteoclasts Prime TNFα-Producing CD4(+) T Cells and Express CX3 CR1

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research - 30 Jun 2016

Ibáñez L, Abou-Ezzi G, Ciucci T, Amiot V, Belaïd N, Obino D, Mansour A, Rouleau M, Wakkach A, Blin-Wakkach C

Link to Pubmed [PMID] – 27161765

J. Bone Miner. Res. 2016 Oct;31(10):1899-1908

Bone destruction is a hallmark of chronic rheumatic diseases. Although the role of osteoclasts in bone loss is clearly established, their implication in the inflammatory response has not been investigated despite their monocytic origin. Moreover, specific markers are lacking to characterize osteoclasts generated in inflammatory conditions. Here, we have explored the phenotype of inflammatory osteoclasts and their effect on CD4(+) T cell responses in the context of bone destruction associated with inflammatory bowel disease. We used the well-characterized model of colitis induced by transfer of naive CD4(+) T cells into Rag1(-/-) mice, which is associated with severe bone destruction. We set up a novel procedure to sort pure osteoclasts generated in vitro to analyze their phenotype and specific immune responses by FACS and qPCR. We demonstrated that osteoclasts generated from colitic mice induced the emergence of TNFα-producing CD4(+) T cells, whereas those generated from healthy mice induced CD4(+) FoxP3(+) regulatory T cells, in an antigen-dependent manner. This difference is related to the osteoclast origin from monocytes or dendritic cells, to their cytokine expression pattern, and their environment. We identified CX3 CR1 as a marker of inflammatory osteoclasts and we demonstrated that the differentiation of CX3 CR1(+) osteoclasts is controlled by IL-17 in vitro. This work is the first demonstration that, in addition to participating to bone destruction, osteoclasts also induce immunogenic CD4(+) T cell responses upon inflammation. They highlight CX3 CR1 as a novel dual target for antiresorptive and anti-inflammatory treatment in inflammatory chronic diseases. © 2016 American Society for Bone and Mineral Research.

https://www.ncbi.nlm.nih.gov/pubmed/27161765