Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Emeline Camand
Marquage par immunofluorescence d'astrocytes tumoraux ou astrocytomes (lignée cellulaire humaine U373), montrant en rouge, APC et en vert, la tubuline des microtubules. APC est un supresseur de tumeur qui est impliqué dans la polarisation des astrocytes normaux. La localisation d'APC est altérée dans des lignées de gliomes. Pour essayer de corriger, les dérèglements observés lors de la migration des cellules d'astrocytes tumuraux ou gliomes on cherche à connaitre les mécanismes moléculaires fondamentaux qui controlent la polarisation et la migration cellulaire.
Publication : Journal of theoretical biology

Impact of noise on the regulation of intracellular transport of intermediate filaments.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of theoretical biology - 21 Aug 2022

Portet S, Etienne-Manneville S, Leduc C, Dallon JC,

Link to Pubmed [PMID] – 35667486

Link to DOI – S0022-5193(22)00181-310.1016/j.jtbi.2022.111183

J Theor Biol 2022 08; 547(): 111183

Noise affects all biological processes from molecules to cells, organisms and populations. Although the effect of noise on these processes is highly variable, evidence is accumulating which shows natural stochastic fluctuations (noise) can facilitate biological functions. Herein, we investigate the effect of noise on the transport of intermediate filaments in cells by comparing the stochastic and deterministic formalizations of the bidirectional transport of intermediate filaments, long elastic polymers transported along microtubules by antagonistic motor proteins (Dallon et al., 2019; Portet et al., 2019). By numerically exploring discrepancies in timescales and attractors between both formalizations, we characterize the impact of stochastic fluctuations on the individual and ensemble transport. Biologically, we find that noise promotes the collective movement of intermediate filaments and increases the efficiency of its regulation by the biochemical properties of motor-cargo interactions. While stochastic fluctuations reduce the impact of the initial distributions of motor proteins in cells, the number of binding sites and the affinity of motor-cargo interactions are the key parameters controlling transport efficiency and efficacy.