Link to Pubmed [PMID] – 40378201
Link to DOI – 10.1126/sciadv.adv1286
Sci Adv 2025 May; 11(20): eadv1286
The small interfering RNA pathway is the primary antiviral defense mechanism in invertebrates and plants. This systemic mechanism relies on the recognition, transport, and internalization of double-stranded RNA (dsRNA). Our aim was to identify cell surface proteins that bind extracellular dsRNA and mediate its internalization in Drosophila cells. We used coimmunoprecipitation coupled with proteomics analysis and found that silencing heat shock cognate protein 70-4 (Hsc70-4), a constitutively expressed heat shock protein, impairs dsRNA internalization. Unexpectedly, despite lacking a predicted transmembrane domain, Hsc70-4 localizes to the cell membrane via lipid interactions. Antibody blocking experiments revealed an extracellular domain on Hsc70-4 that is essential for dsRNA internalization. Intriguingly, this dsRNA-specific binding capacity of Hsc70-4 functions independently of its chaperone activity. These findings not only highlight Hsc70-4 as a previously uncharacterized and essential component in the dsRNA internalization process but also offer promising insights for advancing RNA interference-based technologies to combat pests and vector-borne diseases.