Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The European journal of neuroscience

Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The European journal of neuroscience - 01 Sep 2010

Slabu L, Escera C, Grimm S, Costa-Faidella J,

Link to Pubmed [PMID] – 20626459

Link to DOI – 10.1111/j.1460-9568.2010.07324.x

Eur J Neurosci 2010 Sep; 32(5): 859-65

The ability to detect unexpected novel stimuli is crucial for survival, as it might urge a prompt adaptive response. Human auditory novelty detection has been associated to the mismatch negativity long-latency auditory-evoked potential, peaking at 100-200 ms. Yet, recent animal studies showing novelty responses at a very short latency (about 20-30 ms) in individual neurons already at the level of the midbrain and thalamus suggest that novelty detection might be a basic principle of the functional organization of the auditory system, expanding from lower levels in the brainstem along the auditory pathway up to higher-order areas of the cerebral cortex. To test this suggestion, we here measured auditory brainstem and middle latency response (MLR) to frequency novel stimuli embedded in an oddball sequence. To oversee refractoriness confounds a ‘control block’ was used. The results showed that occasional changes in auditory frequency information were detected as early as 30 ms (Pa waveform of the MLR) after stimulus onset. The control block precluded these effects as resulting merely from refractoriness, altogether supporting the notion of ‘true’ early auditory change detection in humans, matching the latency range of auditory novelty responses described in individual neurons of subhuman species. Our results suggest that auditory change detection of frequency information is a multistage process that occurs at the primary auditory cortex and is transmitted to the higher levels of the auditory pathway.