Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of bacteriology

Differential patterns of activity displayed by two exo-beta-1,3-glucanases associated with the Aspergillus fumigatus cell wall

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bacteriology - 01 May 1997

Fontaine T, Hartland RP, Diaquin M, Simenel C, Latgé JP

Link to Pubmed [PMID] – 9150209

J. Bacteriol. 1997 May;179(10):3154-63

Two exo-beta-1,3-glucanases (herein designated exoG-I and exoG-II) were isolated from the cell wall autolysate of the filamentous fungus Aspergillus fumigatus and purified by ion-exchange, hydrophobic-interaction, and gel filtration chromatographies. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 82 kDa for the monomeric exoG-I and 230 kDa for the dimeric exoG-II. exoG-I and exoG-II were glycosylated, and N glycans accounted, respectively, for 2 and 44 kDa. Their pH optimum is 5.0. Their optimum temperatures are 55 degrees C for exoG-I and 65 degrees C for exoG-II. By a sensitive colorimetric method and high-performance anion-exchange chromatography for product analysis, two patterns of exo-beta-1,3-glucanase activities were found. The 230-kDa exoG-II enzyme acts on p-nitrophenyl-beta-D-glucoside, beta-1,6-glucan, and beta-1,3-glucan. This activity, which retains the anomeric configuration of glucose released, presented a multichain pattern of attack of the glucan chains and a decrease in the maximum initial velocity (Vm) with the increasing size of the substrate. In contrast, the 82-kDa exoG-I, which inverts the anomeric configuration of the glucose released, hydrolyzed exclusively the beta-1,3-glucan chain with a minimal substrate size of 4 glucose residues. This enzyme presented a repetitive-attack pattern, characterized by an increase in Vm with an increase in substrate size and by a degradation of the glucan chain until it reached laminaritetraose, the limit substrate size. The 82-kDa exoG-I and 230-kDa exoG-II enzymes correspond to a beta-1,3-glucan-glucohydrolase (EC 3.2.1.58) and to a beta-D-glucoside-glucohydrolase (EC 3.2.1.21), respectively. The occurrence and functions of these two classes of exo-beta-1,3-glucanases in other fungal species are discussed.

http://www.ncbi.nlm.nih.gov/pubmed/9150209