Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Genetics

Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genetics - 30 Aug 2008

Guermonprez H, Loot C, Casacuberta JM

Link to Pubmed [PMID] – 18757929

Genetics 2008 Sep;180(1):83-92

Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II elements present in genomes as high-copy-number populations of small and highly homogeneous elements. While virtually all class II transposon families contain non-autonomous defective transposon copies, only a subset of them have a related MITE family. At present it is not known in which circumstances MITEs are generated instead of typical class II defective transposons. The ability to produce MITEs could be an exclusive characteristic of particular transposases, could be related to a particular structure of certain defective class II elements, or could be the consequence of particular constraints imposed by certain host genomes on transposon populations. We describe here a new family of pogo-like transposons from Medicago truncatula closely related to the Arabidopsis Lemi1 element that we have named MtLemi1. In contrast to the Arabidopsis Lemi1, present as a single-copy element and associated with hundreds of related Emigrant MITEs, MtLemi1 has attained >30 copies and has not generated MITEs. This shows that a particular transposon can adopt completely different strategies to colonize genomes. The comparison of AtLemi1 and MtLemi1 reveals transposase-specific domains and possible regulatory sequences that could be linked to the ability to produce MITEs.

http://www.ncbi.nlm.nih.gov/pubmed/18757929