Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Institut Pasteur
Cells infected for 24 hrs with C. Trachomatis. The cell nuclei are labelled in blue, the bacteria appear yellow, within the inclusion lumen. A bacterial protein secreted out the inclusion into the host cytoplasm id labelled in red.
Publication : The EMBO journal

Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The EMBO journal - 22 Jul 2004

Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM

Link to Pubmed [PMID] – 15272305

EMBO J. 2004 Aug;23(16):3196-205

Glycogen and starch are the major readily accessible energy storage compounds in nearly all living organisms. Glycogen is a very large branched glucose homopolymer containing about 90% alpha-1,4-glucosidic linkages and 10% alpha-1,6 linkages. Its synthesis and degradation constitute central pathways in the metabolism of living cells regulating a global carbon/energy buffer compartment. Glycogen biosynthesis involves the action of several enzymes among which glycogen synthase catalyzes the synthesis of the alpha-1,4-glucose backbone. We now report the first crystal structure of glycogen synthase in the presence and absence of adenosine diphosphate. The overall fold and the active site architecture of the protein are remarkably similar to those of glycogen phosphorylase, indicating a common catalytic mechanism and comparable substrate-binding properties. In contrast to glycogen phosphorylase, glycogen synthase has a much wider catalytic cleft, which is predicted to undergo an important interdomain ‘closure’ movement during the catalytic cycle. The structures also provide useful hints to shed light on the allosteric regulation mechanisms of yeast/mammalian glycogen synthases.