Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Research in microbiology

Construction and first characterization of two reciprocal hybrids between LamB from Escherichia coli K12 and Klebsiella pneumoniae

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Research in microbiology - 01 May 1993

Werts C, Charbit A

Link to Pubmed [PMID] – 7504315

Res. Microbiol. 1993 May;144(4):259-69

The LamB proteins from Klebsiella pneumoniae and Escherichia coli K12 were previously shown to be highly homologous. The most conserved parts correspond to the N-proximal third and to the transmembranous portions of the molecule, while the variability occurred essentially within regions exposed to the cell surface or to the periplasm. Since the two proteins displayed identical in vitro trimer stability and in vivo pore properties, we tested whether the N-terminal parts of the two proteins could be exchanged and still allow the formation of stable and functional maltoporins. For that purpose, we expressed the LamB protein from K. pneumoniae in E. coli K12, and constructed two reciprocal hybrids between LamB from E. coli K12 and LamB from K. pneumoniae. The first hybrid (LamBE.c.-K.p.) is composed of residues 1 to 183 from LamBE.c. followed by residues 184 to 404 from LamBK.p. The second one comprises residues 1 to 183 from LamBK.p., followed by residues 184 to 421 from LamBE.c. (LamBK.p.-E.c.). Both hybrid proteins were correctly incorporated in the outer membrane of E. coli K12. Like the two parental LamB proteins, the two hybrids could be purified by affinity chromatography on a starch-sepharose column. The LamBE.c.-K.p. hybrid formed highly stable trimers, but was strongly impaired in its in vivo maltose transport function (15% of the wild-type level). The trimers formed by LamBK.p.-E.c. hybrid were less stable, but could be detected on the surface of intact cells by four anti-LamBE.c. monoclonal antibodies. This hybrid was also affected in its in vivo maltose transport function (30% of the wild-type level). As expected from the location of the residues critical for phage adsorption, both proteins had lost the phage receptor activity of the E. coli K12 LamB protein. We also examined whether LamBE.c. could form heterotrimers with LamBK.p., LamBK.p.-E.c., and LamBE.c.-K.p. In no case were heterotrimers detected, indicating that both terminal parts of the LamB protein are involved in homotrimer formation. All these data suggest that trimer formation and activity involve rare variable residues in the conserved regions and/or variable regions.

http://www.ncbi.nlm.nih.gov/pubmed/7504315