Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : EcoSal Plus: Cellular and molecular biology of E. coli, Salmonella, and the Enterobacteriaceae

Colonization of abiotic surfaces

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in EcoSal Plus: Cellular and molecular biology of E. coli, Salmonella, and the Enterobacteriaceae - 29 Aug 2005

Beloin C, Da Re S, Ghigo JM

Link to Pubmed [PMID] – 26443518

EcoSalPlus

is a relevant model organism for the study of the molecular mechanisms underlying surface colonization. This process requires two essential steps: adhesion to a surface, followed by cell-cell adhesion counteracting the shear forces of the environment, with both steps contributing to the formation of a biofilm. This review provides an overview of the current knowledge of the genetic analyses aiming at identifying factors involved in both of these two highly related biological processes, with a particular emphasis on studies performed in K-12. Bacterial adhesion to abiotic surfaces is likely to be highly dependent on the physicochemical and electrostatic interactions between the bacterial envelope and the substrate, which is itself often conditioned by the fluids to which it is exposed. Genetic analyses have revealed the diversity of genetic factors in that participate in colonization and biofilm formation on abiotic surfaces. The study of surface colonization and biofilm formation represents a rapidly expanding field of investigation. The use of K-12 to investigate the genetic basis of bacterial interactions with surfaces has led to the identification of a large repertoire of adhesins whose expression is subject to a complex interplay between regulatory networks. Understanding how K-12 behaves in complex biofilm communities will certainly contribute to an understanding of how natural commensal and pathogenic isolates develop.

http://www.asmscience.org/content/journal/ecosalplus/10.1128/ecosalplus.8.3.1.3