Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Pierre Lafaye
Astrocytes marqués par des anticorps VHH anti-GFAP. Des anticorps d'alpagas dirigés contre une protéine spécifique des astrocytes, la GFAP (Glial Fibrillary Acidic Protein), ont été obtenus à partir de camélidés immunisés. La partie VHH (partie de l'anticorps qui reconnaît l'antigène) a été exprimée sous forme recombinante chez Escherichia coli.
Publication : Journal of cellular biochemistry

Changes in surface glycopeptides after malignant transformation of rat liver cells and during the regression of hepatoma cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cellular biochemistry - 01 Aug 1987

Chaumeton B, Saunier B, Nato F, Goulut C, Bourrillon R

Link to Pubmed [PMID] – 3624323

J. Cell. Biochem. 1987 Aug;34(4):269-81

Normal liver cells, Zajdela’s hepatoma cells, and regressing hepatoma cells were metabolically labeled with either radioactive glucosamine or mannose. Glycopeptides obtained by exhaustive pronase digestion of these cells were compared after fractionation by gel filtration on Bio-Gel P-6. Chemical analysis, affinity chromatography on immobilized lectins, alkaline treatment, and susceptibility toward endo-beta-N-acetylglucosaminidase and tunicamycin revealed dramatic changes in the glycopeptide patterns of transformed cells during the recovery of normal phenotype. The most prominent feature was the presence on the surface of hepatoma cells of a large glycopeptide, which was absent from normal liver cells and disappeared almost completely during the regression of hepatoma cells. This large glycopeptide had a Mr of 70,000, contained essentially O-glycosidically linked glycan chains, and did not result from a hypersialylation. N-glycosidically linked glycopeptides, high-mannose, and complex-type oligosaccharides were present in distinct proportions according to the differentiation state. Transformation of liver cells led to a reduction of high-mannose type oligosaccharides and an increase in the degree of branching of complex-type oligosaccharides. In addition, “bisected” glycopeptides were present only on hepatoma cells. The pattern of N-linked glycopeptides of normal liver cells was recovered during the regression of hepatoma cells. The origin of glycopeptide differences between normal and transformed cells and the evidence of a relation between carbohydrate changes, in particular the appearance of a large glycopeptide, and tumorigenicity are discussed.

http://www.ncbi.nlm.nih.gov/pubmed/3624323