Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Stem cells and development

CD133/CD140a-based isolation of distinct human multipotent neural progenitor cells and oligodendrocyte progenitor cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Stem cells and development - 30 Apr 2013

Wang J, O'Bara MA, Pol SU, Sim FJ

Link to Pubmed [PMID] – 23488628

Stem Cells Dev. 2013 Aug;22(15):2121-31

The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFαR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133-positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133(+)CD140a(-) cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133(+)CD140a(-) NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133(+)CD140a(+) cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133(+)CD140a(-) cells. As human CD133(+) cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.

https://www.ncbi.nlm.nih.gov/pubmed/23488628