Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : PloS one

Bayesian Monitoring of Emerging Infectious Diseases

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PloS one - 05 Apr 2016

Polyakov P, Breban R

Link to Pubmed [PMID] – 27045370

PLoS ONE 2016;11(4):e0152629

We define data analyses to monitor a change in R, the average number of secondary cases caused by a typical infected individual. The input dataset consists of incident cases partitioned into outbreaks, each initiated from a single index case. We split the input dataset into two successive subsets, to evaluate two successive R values, according to the Bayesian paradigm. We used the Bayes factor between the model with two different R values and that with a single R value to justify that the change in R is statistically significant. We validated our approach using simulated data, generated using known R. In particular, we found that claiming two distinct R values may depend significantly on the number of outbreaks. We then reanalyzed data previously studied by Jansen et al. [Jansen et al. Science 301 (5634), 804], concerning the effective reproduction number for measles in the UK, during 1995-2002. Our analyses showed that the 1995-2002 dataset should be divided into two separate subsets for the periods 1995-1998 and 1999-2002. In contrast, Jansen et al. take this splitting point as input of their analysis. Our estimated effective reproduction numbers R are in good agreement with those found by Jansen et al. In conclusion, our methodology for detecting temporal changes in R using outbreak-size data worked satisfactorily with both simulated and real-world data. The methodology may be used for updating R in real time, as surveillance outbreak data become available.

http://www.ncbi.nlm.nih.gov/pubmed/27045370