Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Emeline Camand
Marquage par immunofluorescence d'astrocytes tumoraux ou astrocytomes (lignée cellulaire humaine U373), montrant en rouge, APC et en vert, la tubuline des microtubules. APC est un supresseur de tumeur qui est impliqué dans la polarisation des astrocytes normaux. La localisation d'APC est altérée dans des lignées de gliomes. Pour essayer de corriger, les dérèglements observés lors de la migration des cellules d'astrocytes tumuraux ou gliomes on cherche à connaitre les mécanismes moléculaires fondamentaux qui controlent la polarisation et la migration cellulaire.
Publication : The Journal of biological chemistry

ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 19 May 2000

Hunke S, Mourez M, Jehanno M, Dassa E, Schneider E

Link to Pubmed [PMID] – 10809785

J. Biol. Chem. 2000 May;275(20):15526-34

The binding protein-dependent maltose transport system of enterobacteria (MalFGK(2)), a member of the ATP-binding cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and of two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. In addition, an extracellular (periplasmic) substrate-binding protein (MalE) is required for activity. Ligand translocation and ATP hydrolysis are dependent on a signaling mechanism originating from the binding protein and traveling through MalF/MalG. Thus, subunit-subunit interactions in the complex are crucial to the transport process but the chemical nature of residues involved is poorly understood. We have investigated the proximity of residues in a conserved sequence (“EAA” loop) of MalF and MalG to residues in a helical segment of the MalK subunits by means of site-directed chemical cross-linking. To this end, single cysteine residues were introduced into each subunit at several positions and the respective malF and malG alleles were individually co-expressed with each of the malK alleles. Membrane vesicles were prepared from those double mutants that contained a functional transporter in vivo and treated with Cu(1,10-phenanthroline)(2)SO(4) or bifunctional cross-linkers. The results suggest that residues Ala-85, Lys-106, Val-114, and Val-117 in the helical segment of MalK, to different extents, participate in constitution of asymmetric interaction sites with the EAA loops of MalF and MalG. Furthermore, both MalK monomers in the complex are in close contact to each other through Ala-85 and Lys-106. These interactions are strongly modulated by MgATP, indicating a structural rearrangement of the subunits during the transport cycle. These data are discussed with respect to current transport models.

http://www.ncbi.nlm.nih.gov/pubmed/10809785