Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 15 Nov 2004

Schlecht G, Loucka J, Najar H, Sebo P, Leclerc C

Link to Pubmed [PMID] – 15528345

J. Immunol. 2004 Nov;173(10):6089-97

Bordetella pertussis adenylate cyclase (CyaA) is an invasive bacterial toxin that delivers its N-terminal catalytic domain into the cytosol of eukaryotic cells bearing the alpha(M)beta(2) integrin (CD11b/CD18), such as myeloid dendritic cells. This allows use of engineered CyaA for targeted delivery of CD8(+) T cell epitopes into the MHC class I pathway of APC and induction of robust and protective cytotoxic responses. In this study, we demonstrate that CyaA can efficiently codeliver both a CD8(+) T cell epitope (OVA(257-264)) and a CD4(+) T cell epitope (MalE(100-114)) into, respectively, the conventional cytosolic or endocytic routes of processing of murine bone marrow-derived dendritic cells. Upon CyaA delivery, a strong potentiation of the MalE(100-114) CD4(+) T cell epitope presentation is observed as compared with the MalE protein, which depends on CyaA interaction with its CD11b receptor and its subsequent clathrin-mediated endocytosis. In vivo, CyaA induces strong and specific Th1 CD4(+) and CD8(+) T cell responses against, respectively, the MalE(100-114) and OVA(257-264) epitopes. These results underscore the potency of CyaA for design of new vaccines.