Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery

Analysis of forces during robot-assisted and manual manipulations of mobile and fixed footplate in temporal bone specimens.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery - 01 Nov 2021

Daoudi H, Torres R, Mazalaigue S, Sterkers O, Ferrary E, Nguyen Y,

Link to Pubmed [PMID] – 33388980

Link to DOI – 10.1007/s00405-020-06553-z

Eur Arch Otorhinolaryngol 2021 Nov; 278(11): 4269-4277

To evaluate the forces involved in different manipulations, manual or robot-assisted, applied to the ossicular chain, on normal temporal bones and on an anatomical model of otosclerosis.Thirteen cadaveric temporal bones, with mobile footplates or with footplates that were fixed using hydroxyapatite cement, were manipulated, manually or using a robotic arm (RobOtol®). “Short contact” of a mobile footplate was the weakest interaction on the incus. “Long contact” was the same manipulation held for 10 s. “Mobilization” was the smallest visualized movement of the mobile footplate, or the movement necessary to regain mobility of the fixed footplate. A six-axis force sensor (Nano17, ATI) measured the maximal peak of forces, summation of forces applied, and yank.Maximal forces during short (~4 mN) and long contact (~15 mN) were similar for manual and robot-assisted manipulations. For manual manipulation, yank measured during long contact was twice as high compared to robot-assisted manipulation: 6 ± 2.4 (n = 5) and 3 ± 1.3 mN/s (n = 5), respectively (mean ± SD, p < 0.02). For mobilization of the mobile footplate, maximal forces during mobilization were similar during manual and robot-assisted manipulations, respectively: 12 ± 2.5 (n = 6) and 19 ± 7.6 mN (n = 7). Compared with mobilization of a mobile footplate, mobilization of a fixed footplate required ~ 60 and ~ 27 times higher maximal forces for manual and robot-assisted manipulations, respectively: 724 ± 366.4 and 507 ± 283.2 mN. Yank was twice as high during manual manipulation compared to robot-assisted manipulation (p < 0.05).Robot-assisted manipulation of the ossicular chain was reliable. Our anatomical model of otosclerosis was successfully developed requiring higher forces for stapes mobilization.

https://pubmed.ncbi.nlm.nih.gov/33388980