Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The EMBO journal

Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The EMBO journal - 01 Sep 2014

Bonnay F, Nguyen XH, Cohen-Berros E, Troxler L, Batsche E, Camonis J, Takeuchi O, Reichhart JM, Matt N

Link to Pubmed [PMID] – 25180232

EMBO J. 2014 Oct;33(20):2349-62

The network of NF-κB-dependent transcription that activates both pro- and anti-inflammatory genes in mammals is still unclear. As NF-κB factors are evolutionarily conserved, we used Drosophila to understand this network. The NF-κB transcription factor Relish activates effector gene expression following Gram-negative bacterial immune challenge. Here, we show, using a genome-wide approach, that the conserved nuclear protein Akirin is a NF-κB co-factor required for the activation of a subset of Relish-dependent genes correlating with the presence of H3K4ac epigenetic marks. A large-scale unbiased proteomic analysis revealed that Akirin orchestrates NF-κB transcriptional selectivity through the recruitment of the Osa-containing-SWI/SNF-like Brahma complex (BAP). Immune challenge in Drosophila shows that Akirin is required for the transcription of a subset of effector genes, but dispensable for the transcription of genes that are negative regulators of the innate immune response. Therefore, Akirins act as molecular selectors specifying the choice between subsets of NF-κB target genes. The discovery of this mechanism, conserved in mammals, paves the way for the establishment of more specific and less toxic anti-inflammatory drugs targeting pro-inflammatory genes.

http://www.ncbi.nlm.nih.gov/pubmed/25180232