Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome Research - 02 Jun 2025

Nora Zidane, Carla Rodrigues, Valerie Bouchez, Martin Rethoret-Pasty, Virginie Passet, Sylvain Brisse, Chiara Crestani

Link to Pubmed [PMID] – 40456603

Link to HAL – pasteur-05109328

Link to DOI – 10.1101/gr.279829.124

Genome Research, In press, pp.gr.279829.124. ⟨10.1101/gr.279829.124⟩

High-throughput massive parallel sequencing has significantly improved bacterial pathogen genomics, diagnostics, and epidemiology. Despite its high accuracy, short-read sequencing struggles with complete genome reconstruction and assembly of extrachromosomal elements such as plasmids. Long-read sequencing with Oxford Nanopore Technologies (ONT) presents an alternative that offers benefits including real-time sequencing and cost-efficiency, particularly useful in resource-limited settings. However, the historically higher error rates of ONT data have so far limited its application in high-precision genomic typing. The recent release of ONT’s R10.4.1 chemistry, with significantly improved raw read accuracy (Q20+), offers a potential solution to this problem. The aim of this study was to evaluate the performance of ONT’s latest chemistry for bacterial genomic typing against the gold standard Illumina technology, focusing on three respiratory pathogens of public health importance, Klebsiella pneumoniae , Bordetella pertussis , and Corynebacterium diphtheriae , and their related species. Using the Rapid Barcoding Kit V14, we generated and analyzed genome assemblies with different basecalling models, at different simulated depths of coverage. ONT assemblies were compared to the Illumina reference for completeness and core genome multilocus sequence typing (cgMLST) accuracy (number of allelic mismatches). Our results show that genomes obtained from raw ONT data basecalled with Dorado SUP v0.9.0, assembled with Flye, and with a minimum coverage depth of 35×, optimized accuracy for all bacterial species tested. Error rates were consistently below 0.5% for each cgMLST scheme, indicating that ONT R10.4.1 data is suitable for high-resolution genomic typing applied to outbreak investigations and public health surveillance.