Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS computational biology - 29 May 2025

Zhukova A, Gascuel O

Link to Pubmed [PMID] – 40440423

Link to DOI – 10.1371/journal.pcbi.1012461

PLoS Comput Biol 2025 May; 21(5): e1012461

Phylodynamics bridges the gap between classical epidemiology and pathogen genome sequence data by estimating epidemiological parameters from time-scaled pathogen phylogenetic trees. The models used in phylodynamics typically assume that the sampling procedure is independent between infected individuals. However, this assumption does not hold for many epidemics, in particular for such sexually transmitted infections as HIV-1, for which contact tracing schemes are included in health policies of many countries. We extended phylodynamic multi-type birth-death (MTBD) models with contact tracing (CT), and developed a simulator to generate trees under MTBD and MTBD-CT models. We proposed a non-parametric test for detecting contact tracing in pathogen phylogenetic trees. Its application to simulated data showed that it is both highly specific and sensitive. For the simplest representative of the MTBD-CT family, the BD-CT(1) model, where only the last contact can be notified, we solved the differential equations and proposed a closed form solution for the likelihood function. We implemented a maximum-likelihood program, which estimates the BD-CT(1) model parameters and their confidence intervals from phylogenetic trees. It performed accurate parameter inference on BD and BD-CT(1) simulated data, and detected contact tracing in HIV-1 B epidemics in Zurich and the UK. Importantly, we showed that not accounting for contact tracing when it is present, leads to bias in parameter estimation with the BD model (overestimation of the becoming-non-infectious rate). This bias is also present, but greatly reduced, when the BD-CT(1) model is used on data where multiple contacts can be notified. Our CT test, MTBD-CT tree simulator and BD-CT(1) parameter estimator are freely available at GitHub (evolbioinfo/treesimulator and evolbioinfo/bdct).