Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique
Starting Date
01
Oct 2016
Status
Ongoing
Members
4
Structures
2

About

While the special relationship between Mycobacterium tuberculosis (Mtb) and host lipids has long been known, it remains a challenging enigma.

It was clearly established that Mtb requires host fatty acids (FAs) and cholesterol to produce energy, build its distinctive lipid-rich cell wall and produce lipid virulence factors. It was also observed that in infected hosts, Mtb constantly resides in a FA-rich environment that the pathogen contributes to generate by inducing a lipid-laden “foamy” phenotype in host macrophages. These observations, and the proximity between lipid droplets and phagosomes containing bacteria within infected macrophages gave rise to the hypothesis that Mtb reprograms host cell lipid metabolism to ensure a continuous supply of essential nutrients and its long-term persistence in vivo. However, recent studies question this principle by indicating that in Mtb-infected macrophages, lipid droplet formation prevents bacterial acquisition of host FAs while supporting the production of FA-derived protective lipid mediators. Further, in vivo investigations reveal discrete macrophage phenotypes linking the FA metabolisms of host cell and intracellular pathogen. Notably  FA storage within lipid droplets not only characterizes macrophages controlling Mtb infection but also quiescent, drug-tolerant Mtb.

We are currently combining lipidomic and genetic approaches to characterize the molecular mechanisms controlling FA metabolism adaptation of macrophages to Mtb infection, and reciprocally.  In this way we are hoping to identify novel anti-mycobacterial strategies targeting the lipid metabolism of both host and pathogen.