Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique
Starting Date
01
Jan 2017
Status
Ongoing
Members
3
Structures
1

About

Molecular and cellular determinants of functional synaptic  diversity

At canonical fast synapses nanoscale alterations in the number, density and location of synaptic vesicles, calcium channels, receptors and fusion proteins play a critical role in defining synaptic strength and plasticity. We hypothesize that variations in these mechanisms contribute to the diversity of synaptic function observed throughout the brain.  We have developed optical strategies for characterization of presynaptic function in boutons with a level of detail approaching that of classical preparation the calyx of Held. We can estimate the properties of presynaptic APs, the properties of the Ca2+ entry (duration, open probability and number of channels), and the Ca2+ channel to synaptic vesicle coupling distance. When combined with newly developed Monte Carlo-based reaction-diffusion simulations we can explore the influence of measured properties on neurotransmitter release. Here we propose to explore the molecular, cellular and biophysical properties of different synapse types to identify common motifs used to elicit different synaptic strengths and short-term plasticity profiles.

 

Completed projects:

Chen, Z., Das, B., Nakamura, Y., DiGregorio, D.A., and Young, S.M., Jr. (2015). Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse J Neurosci 35, 2083-2100.

Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J.S., Shigemoto, R., Silver, R.A., DiGregorio, D.A., and Takahashi, T. (2015). Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development. Neuron 85, 145-158.

Summary: Detailed ultrastructure and biophysical experiments allowed us to propose a novel nanoscale model of synaptic transmission, which is one of the few to robustly predict the time course and strength of neurotransmitter release, and its alterations at throughout development.  We therefore propose that the distance between calcium channels and synaptic vesicles is a tunable mechanism underlying the diversity of synaptic strength (Chen et al., 2015; Nakamura et al., 2015).